美文网首页
logistic_regression

logistic_regression

作者: scpy | 来源:发表于2018-12-24 13:43 被阅读0次
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)
    learning_rate = 0.01
    training_epochs = 25
    batch_size = 100
    display_step = 1
    
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))
    
    pred = tf.nn.softmax(tf.matmul(x, W) + b)
    
    cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples / batch_size)
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer,cost], feed_dict={x: batch_xs, y: batch_ys})
                avg_cost += c / total_batch
            if (epoch + 1) % display_step == 0:
                print('Epoch: %04d' % (epoch + 1), 'cost = {:.9f}'.format(avg_cost))
        print('Optimization Finished!')
    
        correct_predictioon = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_predictioon, tf.float32))
        print("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))
    
    

    相关文章

      网友评论

          本文标题:logistic_regression

          本文链接:https://www.haomeiwen.com/subject/kmxzkqtx.html