美文网首页
Machine-Learning-Day-7-8-9-10-11

Machine-Learning-Day-7-8-9-10-11

作者: 西出玉门东望长安 | 来源:发表于2019-03-01 01:52 被阅读5次
    KNN-K近邻法

    Day 7,8,9,10,11的任务是学习和实现KNN. 开始任务~


    Knn.jpg
    Step1 Data Preprocessing

    首先我们import numpy, pandas, matplotlib. 使用pandas来read数据集. 使用sklearn来分配训练集和测试集. test_size为四分之一. 注意, 这里有必要的话, 我们需要使用特征缩放.

    code如下:

    # Step1 Data Preprocessing
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    # Import Datasets
    dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')
    X = dataset.iloc[:, [2, 3]].values
    Y = dataset.iloc[:, 4].values
    print('X')
    print(X)
    print('Y')
    print(Y)
    
    # Separate TrainSets and TestSets
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25, random_state = 0)
    
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
    
    Step2 KNN Model

    code如下:

    # Step2 KNN train the Model
    from sklearn.neighbors import KNeighborsClassifier
    classifier = KNeighborsClassifier(n_neighbors=5, metric="minkowski", p=2)
    classifier.fit(X_train, Y_train)
    
    Step3 Prediction

    预测结果, 可以使用KNN的分类器来预测结果.
    code如下:

    # Step3 Predection
    Y_pred = classifier.predict(X_test)
    
    Step4 Evaluate the Prediction

    我们预测了测试集. 现在我们将评估逻辑回归模型是否正确的学习和理解. 因此这个混淆矩阵将包含我们模型的正确和错误的预测.
    code如下:

    # Step4 Evaluate the Prediction
    from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(Y_test, Y_pred)
    
    Step5 Visualization

    可视化我们的结果.
    code如下:

    # Step5 Visualization
    from matplotlib.colors import ListedColormap
    X_set,Y_set=X_train,Y_train
    X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01),
                       np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(),X1.max())
    plt.ylim(X2.min(),X2.max())
    for i,j in enumerate(np. unique(Y_set)):
        plt.scatter(X_set[Y_set==j,0],X_set[Y_set==j,1],
                    c = ListedColormap(('red', 'green'))(i), label=j)
    
    plt. title(' KNN(Training set)')
    plt. xlabel(' Age')
    plt. ylabel(' Estimated Salary')
    plt. legend()
    plt. show()
    
    X_set,Y_set=X_test,Y_test
    X1,X2=np. meshgrid(np. arange(start=X_set[:,0].min()-1, stop=X_set[:, 0].max()+1, step=0.01),
                       np. arange(start=X_set[:,1].min()-1, stop=X_set[:,1].max()+1, step=0.01))
    
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(),X1.max())
    plt.ylim(X2.min(),X2.max())
    for i,j in enumerate(np. unique(Y_set)):
        plt.scatter(X_set[Y_set==j,0],X_set[Y_set==j,1],
                    c = ListedColormap(('red', 'green'))(i), label=j)
    
    plt. title(' KNN(Test set)')
    plt. xlabel(' Age')
    plt. ylabel(' Estimated Salary')
    plt. legend()
    plt. show()
    
    Day_4_TestSet.png Day4_TrainSet.png

    相关文章

      网友评论

          本文标题:Machine-Learning-Day-7-8-9-10-11

          本文链接:https://www.haomeiwen.com/subject/kqqruqtx.html