美文网首页
最长公共子序列(LCS)问题

最长公共子序列(LCS)问题

作者: 逆天的怪兽 | 来源:发表于2018-02-25 14:54 被阅读0次

LCS问题的解决思路

穷举法

解最长公共子序列问题时最容易想到的算法是穷举搜索法,即对X的每一个子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列,并且在检查过程中选出最长的公共子序列。X和Y的所有子序列都检查过后即可求出X和Y的最长公共子序列。X的一个子序列相应于下标序列{1, 2, …, m}的一个子序列,因此,X共有2m个不同子序列(Y亦如此,如为2^n),从而穷举搜索法需要指数时间(2^m * 2^n)。

动态规划算法

    事实上,最长公共子序列问题也有最优子结构性质。

记:

Xi=﹤x1,⋯,xi﹥即X序列的前i个字符 (1≤i≤m)(前缀)

Yj=﹤y1,⋯,yj﹥即Y序列的前j个字符 (1≤j≤n)(前缀)

假定Z=﹤z1,⋯,zk﹥∈LCS(X , Y)。

xm=yn(最后一个字符相同),则不难用反证法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn 且显然有Zk-1∈LCS(Xm-1 , Yn-1)即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X , Y)的长度等于LCS(Xm-1 , Yn-1)的长度加1)。

xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y),类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。

由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。

也就是说,解决这个LCS问题,你要求三个方面的东西:1、LCS(Xm-1,Yn-1)+1;2、LCS(Xm-1,Y),LCS(X,Yn-1);3、max{LCS(Xm-1,Y),LCS(X,Yn-1)}。

相关文章

  • lintcode 最长公共子序列

    给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度。说明最长公共子序列的定义: 最长公共子序列问题是在...

  • 子序列

    最长公共子序列(LCS)(lintcode 77) 描述:给出两个字符串,找到最长公共子序列(LCS),返回LCS...

  • LCS问题

    LCS问题包括最长公共子序列和最长公共子串,其中,最长公共子串要求必须连续。 对于二者的求解方式 最长公共子序列:...

  • (6)动态规划(上) LCS

    LCS 问题描述: 在两个给定的序列中, 找出最长的公共子序列(Largest Common Sequence),...

  • 最长公共子序列

    最长公共子序列问题( Longest Common Subsequence problem,LCS) 是求两个给定...

  • LCS详解

    LCS是什么 LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果...

  • LCS解析,打印最大长度和路径

    LCS是什么 LCS是Longest Common Subsequence的缩写,即最长公共子序列。它与子串的区别...

  • LCS:最长公共子序列

    LCS(最长公共子序列)是动态规划里的一道经典的问题。动态规划

  • Java解决LCS(Longest Common Sequenc

    问题描述 LCS问题可以分作最长公共子序列问题和最长公共子集问题,其区别在于前者要求的是连续的属于两个字符串序列的...

  • 深度透析最长公共子序列算法

    最长公共子序列(Longest Common Subsequenen, LCS) 1、概念 动态规划(dynami...

网友评论

      本文标题:最长公共子序列(LCS)问题

      本文链接:https://www.haomeiwen.com/subject/kssrxftx.html