众所周知,sum不传参的时候,是所有元素的总和。这里就不说了。
假设我生成一个numpy数组a,如下
![](https://img.haomeiwen.com/i13717038/f9c4431a1468a1e7.png)
这是一个拥有两维的数组,每一维又拥有三个数组,这个数组里面拥有四个元素。如果我们要将这个a数组中的第一个元素1定位出来,则我们会输入a[0][0][0]。好,这个axis的取值就是这个精确定位某个元素需要经过多少数组的长度,在这里是3,,所以axis的取值有0,1,2。如果一个数组精确到某个元素需要a[n0][n1][n2][...][n],则axis的取值就是n。定位 到这里,axis的参数的取值就解释完成了。
2 理解参数axis取值对sum结果的影响:
前面说了axis的取值(以数组a为例),axis=0,1,2。在这里,精确定位到某个元素可以用a[n0][n1][n2]表示。n0的取值是0,1(数组两维),代表第一个索引;n1的取值是0,1,2(每一维数组拥有3个子数组),代表第二个索引;n2的取值是0,1,2,3(每个子数组有4个元素),代表第三个索引,这几个取值在后面会用到。
2.1 axis = 0的时候:
axis=0,对应n0已经确定下来,即n0取值定为0,1。所以sum每个元素的求和公式是sum = a[0][n1][n2]+a[1][n1][n2]。接下来确定sum的行数和列数,n1的取值是0,1,2,为3个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为3*4的数组。
如何求sum的各个元素呢,sum = a[0][n1][n2]+a[1][n1][n2]这个公式又如何理解呢?如下。我们可以做一个表格:注意颜色
![](https://img.haomeiwen.com/i13717038/fec0d9b8f11df7ee.png)
所以sum(axis=0)的值是 [ [2, 2, 5, 2], [3, 3, 5, 1], [4, 4, 5, 2]]。
验证一下, 正确!
![](https://img.haomeiwen.com/i13717038/04d5477a0723f1d5.png)
2.2 axis = 1的时候:
axis=1,对应n1已经确定下来,即n1取值定为0,1,2。所以sum每个元素的求和公式是sum =a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n2的取值是0,1,2,3,为4个数,代表列数,所以sum为2*4的数组。
如何求sum的各个元素呢,sum = a[n0][0][n2]+a[n0][1][n2]+a[n0][2][n2]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
![](https://img.haomeiwen.com/i13717038/30aeef7ec36dfd20.png)
所以sum(axis=1)的值是 [ [4, 7, 10, 4], [5, 2, 5, 1]]. 验证如下,正确。
![](https://img.haomeiwen.com/i13717038/9c07c6150d671a3f.png)
2.3 axis = 2的时候:
axis=2,对应n2已经确定下来,即n2取值定为0,1,2, 3。所以sum每个元素的求和公式是sum =a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]。接下来确定sum的行数和列数,n0的取值是0,1,为2个数,代表行数,n1的取值是0,1,2,为3个数,代表列数,所以sum为2*3的数组。
如何求sum的各个元素呢,sum = a[n0][n1][0]+a[n0][n1][1]+a[n0][n1][2]+a[n0][n1][3]这个公式又如何理解呢?我们又做一个表格,颜色不标注了
![](https://img.haomeiwen.com/i13717038/81efc64726d7e8f4.png)
所以sum(axis=2)的值是 [ [8, 7, 10], [3, 5, 5]]. 验证如下,正确。
![](https://img.haomeiwen.com/i13717038/21064b4e5f34ae35.png)
keepdims 的含义
keepdims主要用于保持矩阵的二维特性
![](https://img.haomeiwen.com/i13717038/dc68b8856cab1b73.png)
输出
![](https://img.haomeiwen.com/i13717038/9c4c0ddaeac6ed6f.png)
网友评论