美文网首页深入理解HBASE
深入理解HBASE(3.4)RegionServer-Memst

深入理解HBASE(3.4)RegionServer-Memst

作者: 宋大壮 | 来源:发表于2019-03-24 23:07 被阅读0次

    简介

    Region内每个ColumnFamily的数据组成一个Store。每个Store内包括一个MemStore和若干个StoreFile(HFile)组成。

    Memstore类重要成员变量

    volatile KeyValueSkipListSet kvset;*//内存中存放更新的KV的数据结构*
    volatile KeyValueSkipListSet snapshot;*//Flush操作时的KV暂存区域*
    final ReentrantReadWriteLock lock = **new** ReentrantReadWriteLock();*//Flush操作与kvset之间的可重入读写锁*
    final AtomicLong size;*//跟踪记录MemStore的占用的Heap内存大小*
    TimeRangeTracker timeRangeTracker;*//跟踪记录kvset的最小和最大时间戳*
    TimeRangeTracker snapshotTimeRangeTracker;*//跟踪记录snapshot的最小和最大时间戳*
    MemStoreLAB allocator;*//实际内存分配器*</pre>
    

    Memstore 工作流程

    Memstore 工作流程

    Memstore Flush

    HBase为了方便按照RowKey进行检索,要求HFile中数据都按照RowKey进行排序,Memstore数据在flush为HFile之前会进行一次排序

    为了减少flush过程对读写的影响,HBase采用了类似于两阶段提交的方式,将整个flush过程分为三个阶段:

    1. prepare阶段:遍历当前Region中的所有Memstore,将Memstore中当前数据集kvset做一个快照snapshot,然后再新建一个新的kvset。后期的所有写入操作都会写入新的kvset中,而整个flush阶段读操作会首先分别遍历kvset和snapshot,如果查找不到再会到HFile中查找。prepare阶段需要加一把updateLock对写请求阻塞,结束之后会释放该锁。因为此阶段没有任何费时操作,因此持锁时间很短。

    2. flush阶段:遍历所有Memstore,将prepare阶段生成的snapshot持久化为临时文件,临时文件会统一放到目录.tmp下。这个过程因为涉及到磁盘IO操作,因此相对比较耗时。

    3. commit阶段:遍历所有的Memstore,将flush阶段生成的临时文件移到指定的ColumnFamily目录下,针对HFile生成对应的storefile和Reader,把storefile添加到HStore的storefiles列表中,最后再清空prepare阶段生成的snapshot。

    频繁的Memstore Flushes

    要避免“写阻塞”,貌似让Flush操作尽量的早于达到触发“写操作”的阈值为宜。但是,这将导致频繁的Flush操作,而由此带来的后果便是读性能下降以及额外的负载。

    每次的Memstore Flush都会为每个CF创建一个HFile。频繁的Flush就会创建大量的HFile。这样HBase在检索的时候,就不得不读取大量的HFile,读性能会受很大影响。

    为预防打开过多HFile及避免读性能恶化,HBase有专门的HFile合并处理(HFile Compaction Process)。HBase会周期性的合并数个小HFile为一个大的HFile。明显的,有Memstore Flush产生的HFile越多,集群系统就要做更多的合并操作(额外负载)。更糟糕的是:Compaction处理是跟集群上的其他请求并行进行的。当HBase不能够跟上Compaction的时候(同样有阈值设置项),会在RS上出现“写阻塞”。像上面说到的,这是最最不希望的。

    提示:严重关切RS上Compaction Queue 的size。要在其引起问题前,阻止其持续增大。

    想了解更多HFile 创建和合并,可参看 Visualizing HBase Flushes And Compactions

    理想情况下,在不超过hbase.regionserver.global.memstore.upperLimit的情况下,Memstore应该尽可能多的使用内存(配置给Memstore部分的,而不是真个Heap的)。下图展示了一张“较好”的情况:

    网络图片

    KeyValueSkipListSet

    hbase使用的是jdk提供的ConcurrentSkipListMap,并对其进行了的封装,Map结构是<KeyValue,KeyValue>的形式。Concurrent表示线程安全。

    SkipList是一种高效的数据结构,之前专门写过文章,这里就不表了

    Memstore 引起的内存碎片问题

    写入MemStore中的KV,被记录在kvset中。根据JVM内存的垃圾回收策略,在如下条件会触发Full GC。 1、内存满或者触发阈值。 2、内存碎片过多,造成新的分配找不到合适的内存空间。 RS上服务多个Region,如果不对KV的分配空间进行控制的话,由于访问的无序性以及KV长度的不同,每个Region上的KV会无规律地分散在内存上。Region执行了MemStore的Flush操作,再经过JVM GC之后就会出现零散的内存碎片现象,而进一步数据大量写入,就会触发Full-GC。

    为了解决因为内存碎片造成的Full-GC的现象,RegionServer引入了MSLAB(HBASE-3455)。MSLAB全称是MemStore-Local Allocation Buffers。它通过预先分配连续的内存块,把零散的内存申请合并,有效改善了过多内存碎片导致的Full GC问题。 MSLAB的工作原理如下: 1、在MemStore初始化时,创建MemStoreLAB对象allocator。 2、创建一个2M大小的Chunk数组,偏移量起始设置为0。Chunk的大小可以通过参数hbase.hregion.memstore.mslab.chunksize调整。 3、 当MemStore有KeyValue加入时,maybeCloneWithAllocator(KeyValue)函数调用allocator为其查找KeyValue.getBuffer()大小的空间,若KeyValue的大小低于默认的256K,会尝试在当前Chunk下查找空间,如果空间不够,MemStoreLAB重新申请新的Chunk。选中Chunk之后,会修改offset=原偏移量+KeyValue.getBuffer().length。chunk内控制每个KeyValue大小由hbase.hregion.memstore.mslab.max.allocation配置。 4、 空间检查通过的KeyValue,会拷贝到Chunk的数据块中。此时,原KeyValue由于不再被MemStore引用,会在接下来的JVM的Minor GC被清理。

    MSLAB解决了因为碎片造成Full GC的问题,然而在MemStore被Flush到文件系统时,没有reference的chunk,需要GC来进行回收,因此,在更新操作频繁发生时,会造成较多的Young GC。 针对该问题,HBASE-8163提出了MemStoreChunkPool的解决方案,方案已经被HBase-0.95版本接收。它的实现思路: 1、 创建chunk池来管理没有被引用的chunk,不再依靠JVM的GC回收。 2、 当一个chunk没有引用时,会被放入chunk池。 3、chunk池设置阈值,如果超过了,则会放弃放入新的chunk到chunk池。 4、 如果当需要新的chunk时,首先从chunk池中获取。 根据patch的测试显示,配置MemStoreChunkPool之后,YGC降低了40%,写性能有5%的提升。如果是0.95以下版本的用户,可以参考HBASE-8163给出patch。

    相关文章

      网友评论

        本文标题:深入理解HBASE(3.4)RegionServer-Memst

        本文链接:https://www.haomeiwen.com/subject/ktxmvqtx.html