美文网首页
树结构之Trie 树(前缀树,字典树)

树结构之Trie 树(前缀树,字典树)

作者: 一心一意弄算法 | 来源:发表于2018-12-14 15:19 被阅读14次

    前言

    最进在看分词源码,发现词库的存储是基于Trie树的数据结构,特此了解了下其原理。Trie树又叫前缀树,字典树。Trie树的用途:字典搜索,词频统计,前缀查询等等。原理也不复杂。

    Trie 树结构。

    假设有 '不问', '不只', '朝', '朝着','不问你'这些词,那么如何构建trie树呢?直接上图:
    好处:
    • 压缩数据,将例子中10个字压缩成6个字进行存储,节省空间。
    • 查找前缀方便,假如要搜索‘不’开头的词不需要遍历整个字典。

    代码实现:

    树节点:

    class TreeNode:
        
        def __init__(self, word, number = 1,isEndWord = False):
            self.word = word
            self.number = number#前缀次数
            
            self.prefix_terms = set() #记录包含此前缀的所有词
            self.child_nodes = {}
            self.isEndWord = isEndWord #判断是否是一个词的最后个字
            
            if isEndWord:
                self.end_number = 1#词频次数
            else:
                self.end_number = 0#词频次数
            
        
        def add_child(self, word, isEndWord, term = None):
            self.prefix_terms.add(term)
            
            if word in self.child_nodes.keys():
                sub_tree_node = self.child_nodes.get(word)
                sub_tree_node.prefix_terms.add(term)
                sub_tree_node.number += 1
                if isEndWord:
                    sub_tree_node.end_number += 1
            
            else:
                self.child_nodes[word] = TreeNode(word, number= 1,isEndWord = isEndWord)
                self.child_nodes[word].prefix_terms.add(term)
    

    总共包含5个成员变量,分别是当前字符word,统计的前缀次数number,包含此前缀的词汇prefix_terms,当前字符是否是词的结束字isEndWord,以及当前词的词频。

    构建树

    class Trie:
        
        def __init__(self): 
            self.root = TreeNode("root")
        
        
        def buildTree(self,term):
            term = term.strip()
            if len(term) == 0:
                return
            
            current_node = self.root
            iter_num = len(term)
            for i in range(iter_num):
                if i == (iter_num - 1):
                    current_node.add_child(term[i], isEndWord = True, term = term)
                else:
                    current_node.add_child(term[i], isEndWord = False, term = term)
                
                current_node = current_node.child_nodes.get(term[i])
    

    树搜索:

    #前缀树查找
        #前缀树查找
        def searchTree(self,term):
             
            term = term.strip()
            if len(term) == 0:
                return None,0,0
            
            current_node = self.root
            iter_num = len(term)
            for i in range(iter_num):
                
                if term[i] in current_node.child_nodes.keys():
                    current_node = current_node.child_nodes.get(term[i])
                     
                    if i == (iter_num - 1):
                        return current_node.prefix_terms,current_node.end_number,current_node.number
                else:
                    return None,0,0
                
        #####递归,动态规划思想
        def searchTreeByRecursion(self, term, current_node = None):
            
            if current_node is None:
                current_node = self.root
                term = term.strip()
                if len(term) == 0:
                    return None,0,0
            
            if term[0] in current_node.child_nodes.keys():
                current_node = current_node.child_nodes.get(term[0])
                if len(term) == 1:
                    return current_node.prefix_terms, current_node.end_number, current_node.number
                
                return self.searchTreeByRecursion(term[1:], current_node)
            else:
                return None, 0, 0
    

    写了两个方法,一个从上往下遍历,一个从下往上基于递归。

    输出树:

    def display_tree(self, current_node = None, display_content = None):
            display = ''
            if current_node is None:
                current_node = self.root
                print([current_node.word])
                display_content = ''
     
            if not current_node.child_nodes:
                print(display_content + current_node.word+'/'+str(current_node.number)+'/'+str(current_node.end_number)+'/'+str(current_node.isEndWord))
            else:
                for sub_node in current_node.child_nodes.values():
                    self.display_tree(sub_node,display_content+ current_node.word+'/'+str(current_node.number)+'/'+str(current_node.end_number)+'/'+str(current_node.isEndWord)+"--->")
                    
    

    这里输出树的每条分支,已经各个树节点的变量。

    代码已上传百度网盘:
    链接:https://pan.baidu.com/s/1vYmhrcHAIS-3oT3tLN_91Q 密码:hsbw

    相关文章

      网友评论

          本文标题:树结构之Trie 树(前缀树,字典树)

          本文链接:https://www.haomeiwen.com/subject/kvmwhqtx.html