最近发现AMS提供了一个获取进程内存信息的接口,自己刚好要用到这一块,就抽空分析了一下。
1 入口是ActivityManagerService.java 的 getProcessMemoryInfo
@Override
public Debug.MemoryInfo[] getProcessMemoryInfo(int[] pids) {
// 1. 权限校验
enforceNotIsolatedCaller("getProcessMemoryInfo");
// 2. 创建返回结果MemoryInfo[]
Debug.MemoryInfo[] infos = new Debug.MemoryInfo[pids.length];
for (int i=pids.length-1; i>=0; i--) {
// 3. 获取ProcessRecord,等会儿要把获取到的内存信息保存进去。之所以先获取的目的是保证这个进程是一个稳定的进程。要不然刚创建就删除就没有保存的必要了
ProcessRecord proc;
int oomAdj;
synchronized (this) {
synchronized (mPidsSelfLocked) {
proc = mPidsSelfLocked.get(pids[i]);
oomAdj = proc != null ? proc.setAdj : 0;
}
}
infos[i] = new Debug.MemoryInfo();
long startTime = SystemClock.currentThreadTimeMillis();
// 4. 去Debug类获取内存信息
Debug.getMemoryInfo(pids[i], infos[i]);
long endTime = SystemClock.currentThreadTimeMillis();
// 5. 如果进程稳定的话,把内存信息记录下来
if (proc != null) {
synchronized (this) {
if (proc.thread != null && proc.setAdj == oomAdj) {
// Record this for posterity if the process has been stable.
proc.baseProcessTracker.addPss(infos[i].getTotalPss(),
infos[i].getTotalUss(), infos[i].getTotalRss(), false,
ProcessStats.ADD_PSS_EXTERNAL_SLOW, endTime-startTime,
proc.pkgList);
}
}
}
}
return infos;
}
从上面代码分析,可以发现AMS主要做了这么几件事:
- 检验调用方权限
- 去Debug类中获取内存信息
- 把获取到的信息保存到ProceeRecord
所以,获取内存信息的主要处理是在Debug中,我们接着向下分析。
2. Debug.java 的 getMemoryInfo
这是一个Native方法,这里只有通过jni找到对应的c++类来分析了。
public static native void getMemoryInfo(int pid, MemoryInfo memoryInfo)
3. android_os_Debug.cpp 的 static const JNINativeMethod gMethods[]
通过搜索jni的实现发现,getMemoryInfo的jni定义在android_os_Debug.cpp中,其对应的c++方法是(void*) android_os_Debug_getDirtyPagesPid
static const JNINativeMethod gMethods[] = {
{ "getNativeHeapSize", "()J",
(void*) android_os_Debug_getNativeHeapSize },
{ "getNativeHeapAllocatedSize", "()J",
(void*) android_os_Debug_getNativeHeapAllocatedSize },
{ "getNativeHeapFreeSize", "()J",
(void*) android_os_Debug_getNativeHeapFreeSize },
{ "getMemoryInfo", "(Landroid/os/Debug$MemoryInfo;)V",
(void*) android_os_Debug_getDirtyPages },
{ "getMemoryInfo", "(ILandroid/os/Debug$MemoryInfo;)V",
(void*) android_os_Debug_getDirtyPagesPid },
{ "getPss", "()J",
(void*) android_os_Debug_getPss },
{ "getPss", "(I[J[J)J",
(void*) android_os_Debug_getPssPid },
{ "getMemInfo", "([J)V",
(void*) android_os_Debug_getMemInfo },
{ "dumpNativeHeap", "(Ljava/io/FileDescriptor;)V",
(void*) android_os_Debug_dumpNativeHeap },
{ "dumpNativeMallocInfo", "(Ljava/io/FileDescriptor;)V",
(void*) android_os_Debug_dumpNativeMallocInfo },
{ "getBinderSentTransactions", "()I",
(void*) android_os_Debug_getBinderSentTransactions },
{ "getBinderReceivedTransactions", "()I",
(void*) android_os_getBinderReceivedTransactions },
{ "getBinderLocalObjectCount", "()I",
(void*)android_os_Debug_getLocalObjectCount },
{ "getBinderProxyObjectCount", "()I",
(void*)android_os_Debug_getProxyObjectCount },
{ "getBinderDeathObjectCount", "()I",
(void*)android_os_Debug_getDeathObjectCount },
{ "dumpJavaBacktraceToFileTimeout", "(ILjava/lang/String;I)Z",
(void*)android_os_Debug_dumpJavaBacktraceToFileTimeout },
{ "dumpNativeBacktraceToFileTimeout", "(ILjava/lang/String;I)Z",
(void*)android_os_Debug_dumpNativeBacktraceToFileTimeout },
{ "getUnreachableMemory", "(IZ)Ljava/lang/String;",
(void*)android_os_Debug_getUnreachableMemory },
};
4. android_os_Debug.cpp的android_os_Debug_getDirtyPagesPid
static void android_os_Debug_getDirtyPagesPid(JNIEnv *env, jobject clazz,
jint pid, jobject object)
{
bool foundSwapPss;
stats_t stats[_NUM_HEAP];
memset(&stats, 0, sizeof(stats));
// 1. 从linux /proc/{pid}/smaps 读取信息到stats数组中,后面会详细分析该函数
load_maps(pid, stats, &foundSwapPss);
struct graphics_memory_pss graphics_mem;
// 2. 读取图形占用的内存,保存到stats中
if (read_memtrack_memory(pid, &graphics_mem) == 0) {
stats[HEAP_GRAPHICS].pss = graphics_mem.graphics;
stats[HEAP_GRAPHICS].privateDirty = graphics_mem.graphics;
stats[HEAP_GRAPHICS].rss = graphics_mem.graphics;
stats[HEAP_GL].pss = graphics_mem.gl;
stats[HEAP_GL].privateDirty = graphics_mem.gl;
stats[HEAP_GL].rss = graphics_mem.gl;
stats[HEAP_OTHER_MEMTRACK].pss = graphics_mem.other;
stats[HEAP_OTHER_MEMTRACK].privateDirty = graphics_mem.other;
stats[HEAP_OTHER_MEMTRACK].rss = graphics_mem.other;
}
// 3. 超过_NUM_CORE_HEAP之后的内存段信息统一归属到UNKNOWN中
for (int i=_NUM_CORE_HEAP; i<_NUM_EXCLUSIVE_HEAP; i++) {
stats[HEAP_UNKNOWN].pss += stats[i].pss;
stats[HEAP_UNKNOWN].swappablePss += stats[i].swappablePss;
stats[HEAP_UNKNOWN].rss += stats[i].rss;
stats[HEAP_UNKNOWN].privateDirty += stats[i].privateDirty;
stats[HEAP_UNKNOWN].sharedDirty += stats[i].sharedDirty;
stats[HEAP_UNKNOWN].privateClean += stats[i].privateClean;
stats[HEAP_UNKNOWN].sharedClean += stats[i].sharedClean;
stats[HEAP_UNKNOWN].swappedOut += stats[i].swappedOut;
stats[HEAP_UNKNOWN].swappedOutPss += stats[i].swappedOutPss;
}
// 5. 把上述信息中保存到jni中,返回给java层
for (int i=0; i<_NUM_CORE_HEAP; i++) {
env->SetIntField(object, stat_fields[i].pss_field, stats[i].pss);
env->SetIntField(object, stat_fields[i].pssSwappable_field, stats[i].swappablePss);
env->SetIntField(object, stat_fields[i].rss_field, stats[i].rss);
env->SetIntField(object, stat_fields[i].privateDirty_field, stats[i].privateDirty);
env->SetIntField(object, stat_fields[i].sharedDirty_field, stats[i].sharedDirty);
env->SetIntField(object, stat_fields[i].privateClean_field, stats[i].privateClean);
env->SetIntField(object, stat_fields[i].sharedClean_field, stats[i].sharedClean);
env->SetIntField(object, stat_fields[i].swappedOut_field, stats[i].swappedOut);
env->SetIntField(object, stat_fields[i].swappedOutPss_field, stats[i].swappedOutPss);
}
// 6. 设置是否含有foundSwapPss标志
env->SetBooleanField(object, hasSwappedOutPss_field, foundSwapPss);
// 7. 查看MemeryInfo中是否含有otherStats字段,如果有的话,把Unknow那部分内存赋值到该字段中
jintArray otherIntArray = (jintArray)env->GetObjectField(object, otherStats_field);
jint* otherArray = (jint*)env->GetPrimitiveArrayCritical(otherIntArray, 0);
if (otherArray == NULL) {
return;
}
int j=0;
for (int i=_NUM_CORE_HEAP; i<_NUM_HEAP; i++) {
otherArray[j++] = stats[i].pss;
otherArray[j++] = stats[i].swappablePss;
otherArray[j++] = stats[i].rss;
otherArray[j++] = stats[i].privateDirty;
otherArray[j++] = stats[i].sharedDirty;
otherArray[j++] = stats[i].privateClean;
otherArray[j++] = stats[i].sharedClean;
otherArray[j++] = stats[i].swappedOut;
otherArray[j++] = stats[i].swappedOutPss;
}
// 8. 内存清理
env->ReleasePrimitiveArrayCritical(otherIntArray, otherArray, 0);
}
总结一下,上面代码主要做了一下几件事情:
- 从linux的/proc/{pid}/smaps读取进程的内存信息,然后保存到返回数组stats_t
- 读取图形占用的内存信息,也保存到stats_t中
- 把核心堆外的其他内存保存到Unknow和otherStats数组中
4.1 load_maps解析
static void load_maps(int pid, stats_t* stats, bool* foundSwapPss)
{
*foundSwapPss = false;
// 1. 组装文件路径 /proc/{pid}/smaps
std::string smaps_path = base::StringPrintf("/proc/%d/smaps", pid);
UniqueFile fp = MakeUniqueFile(smaps_path.c_str(), "re");
if (fp == nullptr) return;
// 2. 从文件中读取数据,read_mapinfo就是具体的解析规则了,就是把某一段内存某一个内存放在数组的某一个位置中
read_mapinfo(fp.get(), stats, foundSwapPss);
}
下面具体来看一下 read_mapinfo
4.1.1 static void read_mapinfo(FILE fp, stats_t stats, bool* foundSwapPss)
static void read_mapinfo(FILE *fp, stats_t* stats, bool* foundSwapPss)
{
char line[1024];
int len, nameLen;
bool skip, done = false;
unsigned pss = 0, swappable_pss = 0, rss = 0;
float sharing_proportion = 0.0;
unsigned shared_clean = 0, shared_dirty = 0;
unsigned private_clean = 0, private_dirty = 0;
unsigned swapped_out = 0, swapped_out_pss = 0;
bool is_swappable = false;
unsigned temp;
uint64_t start;
uint64_t end = 0;
uint64_t prevEnd = 0;
char* name;
int name_pos;
int whichHeap = HEAP_UNKNOWN;
int subHeap = HEAP_UNKNOWN;
int prevHeap = HEAP_UNKNOWN;
*foundSwapPss = false;
if(fgets(line, sizeof(line), fp) == 0) return;
while (!done) {
prevHeap = whichHeap;
prevEnd = end;
whichHeap = HEAP_UNKNOWN;
subHeap = HEAP_UNKNOWN;
skip = false;
is_swappable = false;
len = strlen(line);
if (len < 1) return;
line[--len] = 0;
if (sscanf(line, "%" SCNx64 "-%" SCNx64 " %*s %*x %*x:%*x %*d%n", &start, &end, &name_pos) != 2) {
skip = true;
} else {
while (isspace(line[name_pos])) {
name_pos += 1;
}
name = line + name_pos;
nameLen = strlen(name);
// Trim the end of the line if it is " (deleted)".
const char* deleted_str = " (deleted)";
if (nameLen > (int)strlen(deleted_str) &&
strcmp(name+nameLen-strlen(deleted_str), deleted_str) == 0) {
nameLen -= strlen(deleted_str);
name[nameLen] = '\0';
}
if ((strstr(name, "[heap]") == name)) {
whichHeap = HEAP_NATIVE;
} else if (strncmp(name, "[anon:libc_malloc]", 18) == 0) {
whichHeap = HEAP_NATIVE;
} else if (strncmp(name, "[stack", 6) == 0) {
whichHeap = HEAP_STACK;
} else if (nameLen > 3 && strcmp(name+nameLen-3, ".so") == 0) {
whichHeap = HEAP_SO;
is_swappable = true;
} else if (nameLen > 4 && strcmp(name+nameLen-4, ".jar") == 0) {
whichHeap = HEAP_JAR;
is_swappable = true;
} else if (nameLen > 4 && strcmp(name+nameLen-4, ".apk") == 0) {
whichHeap = HEAP_APK;
is_swappable = true;
} else if (nameLen > 4 && strcmp(name+nameLen-4, ".ttf") == 0) {
whichHeap = HEAP_TTF;
is_swappable = true;
} else if ((nameLen > 4 && strstr(name, ".dex") != NULL) ||
(nameLen > 5 && strcmp(name+nameLen-5, ".odex") == 0)) {
whichHeap = HEAP_DEX;
subHeap = HEAP_DEX_APP_DEX;
is_swappable = true;
} else if (nameLen > 5 && strcmp(name+nameLen-5, ".vdex") == 0) {
whichHeap = HEAP_DEX;
// Handle system@framework@boot* and system/framework/boot*
if (strstr(name, "@boot") != NULL || strstr(name, "/boot") != NULL) {
subHeap = HEAP_DEX_BOOT_VDEX;
} else {
subHeap = HEAP_DEX_APP_VDEX;
}
is_swappable = true;
} else if (nameLen > 4 && strcmp(name+nameLen-4, ".oat") == 0) {
whichHeap = HEAP_OAT;
is_swappable = true;
} else if (nameLen > 4 && strcmp(name+nameLen-4, ".art") == 0) {
whichHeap = HEAP_ART;
// Handle system@framework@boot* and system/framework/boot*
if (strstr(name, "@boot") != NULL || strstr(name, "/boot") != NULL) {
subHeap = HEAP_ART_BOOT;
} else {
subHeap = HEAP_ART_APP;
}
is_swappable = true;
} else if (strncmp(name, "/dev/", 5) == 0) {
if (strncmp(name, "/dev/kgsl-3d0", 13) == 0) {
whichHeap = HEAP_GL_DEV;
} else if (strncmp(name, "/dev/ashmem", 11) == 0) {
if (strncmp(name, "/dev/ashmem/dalvik-", 19) == 0) {
whichHeap = HEAP_DALVIK_OTHER;
if (strstr(name, "/dev/ashmem/dalvik-LinearAlloc") == name) {
subHeap = HEAP_DALVIK_OTHER_LINEARALLOC;
} else if ((strstr(name, "/dev/ashmem/dalvik-alloc space") == name) ||
(strstr(name, "/dev/ashmem/dalvik-main space") == name)) {
// This is the regular Dalvik heap.
whichHeap = HEAP_DALVIK;
subHeap = HEAP_DALVIK_NORMAL;
} else if (strstr(name, "/dev/ashmem/dalvik-large object space") == name ||
strstr(name, "/dev/ashmem/dalvik-free list large object space")
== name) {
whichHeap = HEAP_DALVIK;
subHeap = HEAP_DALVIK_LARGE;
} else if (strstr(name, "/dev/ashmem/dalvik-non moving space") == name) {
whichHeap = HEAP_DALVIK;
subHeap = HEAP_DALVIK_NON_MOVING;
} else if (strstr(name, "/dev/ashmem/dalvik-zygote space") == name) {
whichHeap = HEAP_DALVIK;
subHeap = HEAP_DALVIK_ZYGOTE;
} else if (strstr(name, "/dev/ashmem/dalvik-indirect ref") == name) {
subHeap = HEAP_DALVIK_OTHER_INDIRECT_REFERENCE_TABLE;
} else if (strstr(name, "/dev/ashmem/dalvik-jit-code-cache") == name ||
strstr(name, "/dev/ashmem/dalvik-data-code-cache") == name) {
subHeap = HEAP_DALVIK_OTHER_CODE_CACHE;
} else if (strstr(name, "/dev/ashmem/dalvik-CompilerMetadata") == name) {
subHeap = HEAP_DALVIK_OTHER_COMPILER_METADATA;
} else {
subHeap = HEAP_DALVIK_OTHER_ACCOUNTING; // Default to accounting.
}
} else if (strncmp(name, "/dev/ashmem/CursorWindow", 24) == 0) {
whichHeap = HEAP_CURSOR;
} else if (strncmp(name, "/dev/ashmem/libc malloc", 23) == 0) {
whichHeap = HEAP_NATIVE;
} else {
whichHeap = HEAP_ASHMEM;
}
} else {
whichHeap = HEAP_UNKNOWN_DEV;
}
} else if (strncmp(name, "[anon:", 6) == 0) {
whichHeap = HEAP_UNKNOWN;
} else if (nameLen > 0) {
whichHeap = HEAP_UNKNOWN_MAP;
} else if (start == prevEnd && prevHeap == HEAP_SO) {
// bss section of a shared library.
whichHeap = HEAP_SO;
}
}
//ALOGI("native=%d dalvik=%d sqlite=%d: %s\n", isNativeHeap, isDalvikHeap,
// isSqliteHeap, line);
shared_clean = 0;
shared_dirty = 0;
private_clean = 0;
private_dirty = 0;
swapped_out = 0;
swapped_out_pss = 0;
while (true) {
if (fgets(line, 1024, fp) == 0) {
done = true;
break;
}
if (line[0] == 'S' && sscanf(line, "Size: %d kB", &temp) == 1) {
/* size = temp; */
} else if (line[0] == 'R' && sscanf(line, "Rss: %d kB", &temp) == 1) {
rss = temp;
} else if (line[0] == 'P' && sscanf(line, "Pss: %d kB", &temp) == 1) {
pss = temp;
} else if (line[0] == 'S' && sscanf(line, "Shared_Clean: %d kB", &temp) == 1) {
shared_clean = temp;
} else if (line[0] == 'S' && sscanf(line, "Shared_Dirty: %d kB", &temp) == 1) {
shared_dirty = temp;
} else if (line[0] == 'P' && sscanf(line, "Private_Clean: %d kB", &temp) == 1) {
private_clean = temp;
} else if (line[0] == 'P' && sscanf(line, "Private_Dirty: %d kB", &temp) == 1) {
private_dirty = temp;
} else if (line[0] == 'R' && sscanf(line, "Referenced: %d kB", &temp) == 1) {
/* referenced = temp; */
} else if (line[0] == 'S' && sscanf(line, "Swap: %d kB", &temp) == 1) {
swapped_out = temp;
} else if (line[0] == 'S' && sscanf(line, "SwapPss: %d kB", &temp) == 1) {
*foundSwapPss = true;
swapped_out_pss = temp;
} else if (sscanf(line, "%" SCNx64 "-%" SCNx64 " %*s %*x %*x:%*x %*d", &start, &end) == 2) {
// looks like a new mapping
// example: "10000000-10001000 ---p 10000000 00:00 0"
break;
}
}
if (!skip) {
if (is_swappable && (pss > 0)) {
sharing_proportion = 0.0;
if ((shared_clean > 0) || (shared_dirty > 0)) {
sharing_proportion = (pss - private_clean
- private_dirty)/(shared_clean+shared_dirty);
}
swappable_pss = (sharing_proportion*shared_clean) + private_clean;
} else
swappable_pss = 0;
stats[whichHeap].pss += pss;
stats[whichHeap].swappablePss += swappable_pss;
stats[whichHeap].rss += rss;
stats[whichHeap].privateDirty += private_dirty;
stats[whichHeap].sharedDirty += shared_dirty;
stats[whichHeap].privateClean += private_clean;
stats[whichHeap].sharedClean += shared_clean;
stats[whichHeap].swappedOut += swapped_out;
stats[whichHeap].swappedOutPss += swapped_out_pss;
if (whichHeap == HEAP_DALVIK || whichHeap == HEAP_DALVIK_OTHER ||
whichHeap == HEAP_DEX || whichHeap == HEAP_ART) {
stats[subHeap].pss += pss;
stats[subHeap].swappablePss += swappable_pss;
stats[subHeap].rss += rss;
stats[subHeap].privateDirty += private_dirty;
stats[subHeap].sharedDirty += shared_dirty;
stats[subHeap].privateClean += private_clean;
stats[subHeap].sharedClean += shared_clean;
stats[subHeap].swappedOut += swapped_out;
stats[subHeap].swappedOutPss += swapped_out_pss;
}
}
}
}
上述代码就是对照着smaps文件具体去解析和保存文件,比较简单,就不在赘述了。
4.2 read_memtrack_memory讲解
图形的内存消耗并不在/proc下面记录,需要调用获取/system/core/libmemtrack/memtrack.cpp
static int read_memtrack_memory(struct memtrack_proc* p, int pid,
struct graphics_memory_pss* graphics_mem)
{
int err = memtrack_proc_get(p, pid);
if (err != 0) {
ALOGW("failed to get memory consumption info: %d", err);
return err;
}
ssize_t pss = memtrack_proc_graphics_pss(p);
if (pss < 0) {
ALOGW("failed to get graphics pss: %zd", pss);
return pss;
}
graphics_mem->graphics = pss / 1024;
pss = memtrack_proc_gl_pss(p);
if (pss < 0) {
ALOGW("failed to get gl pss: %zd", pss);
return pss;
}
graphics_mem->gl = pss / 1024;
pss = memtrack_proc_other_pss(p);
if (pss < 0) {
ALOGW("failed to get other pss: %zd", pss);
return pss;
}
graphics_mem->other = pss / 1024;
return 0;
}
5 stats_t保存的内存信息介绍
struct stats_t {
// “Resident Set Size”,实际驻留”在内存中”的内存数
int pss;
int swappablePss;
// Private Rss, Rss中私有的内存页面
int rss;
// Private_Dirty: Rss中已改写的私有页面页面
int privateDirty;
// Shared_Dirty: Rss和其他进程共享的已改写页面
int sharedDirty;
// Private_Clean: Rss中改写的私有页面页面
int privateClean;
// Shared_Clean: Rss中和其他进程共享的未改写页面
int sharedClean;
int swappedOut;
int swappedOutPss;
};
网友评论