美文网首页
CountDownLatch、CyclicBarrier、Sem

CountDownLatch、CyclicBarrier、Sem

作者: Pure_Dream | 来源:发表于2018-01-02 16:00 被阅读0次

    在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch,CyclicBarrier和Semaphore,今天我们就来学习一下这三个辅助类的用法。

    以下是本文目录大纲:

    一.CountDownLatch用法

    二.CyclicBarrier用法

    三.Semaphore用法

    一.CountDownLatch用法

    CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

    CountDownLatch类只提供了一个构造器:

    1publicCountDownLatch(intcount) {  };  //参数count为计数值

    然后下面这3个方法是CountDownLatch类中最重要的方法:

    1、public  void  await() throwsInterruptedException { };   //调用await()方法的线程会被挂起,它会等待直到count值为0才继续执行

    2、public boolean  await(longtimeout, TimeUnit unit) throwsInterruptedException { };  //和await()类似,只不过等待一定的时间后count值还没变为0的话就会继续执行

    3、public void countDown() { };  //将count值减1

    下面看一个例子大家就清楚CountDownLatch的用法了:

    public class Test {

         public static void  main(String[] args) {  

             final CountDownLatch latch = new CountDownLatch(2);

             new Thread(){

                 public void run() {

                     try{

                         System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                        Thread.sleep(3000);

                        System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                        latch.countDown();

                    } catch(InterruptedException e) {

                        e.printStackTrace();

                    }

                 };

             }.start();

             new Thread(){

                 public void run() {

                     try{

                         System.out.println("子线程"+Thread.currentThread().getName()+"正在执行");

                         Thread.sleep(3000);

                         System.out.println("子线程"+Thread.currentThread().getName()+"执行完毕");

                         latch.countDown();

                    } catch(InterruptedException e) {

                        e.printStackTrace();

                    }

                 };

             }.start();

             try{

                 System.out.println("等待2个子线程执行完毕...");

                latch.await();

                System.out.println("2个子线程已经执行完毕");

                System.out.println("继续执行主线程");

            } catch(InterruptedException e) {

                e.printStackTrace();

            }

         }

    }

    执行结果:

    线程Thread-0正在执行

    线程Thread-1正在执行

    等待2个子线程执行完毕...

    线程Thread-0执行完毕

    线程Thread-1执行完毕

    2个子线程已经执行完毕

    继续执行主线程

    二.CyclicBarrier用法

    字面意思回环栅栏,通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier可以被重用。我们暂且把这个状态就叫做barrier,当调用await()方法之后,线程就处于barrier了。

    CyclicBarrier类位于java.util.concurrent包下,CyclicBarrier提供2个构造器:

    1、public CyclicBarrier(int parties, Runnable barrierAction) {

    }

    2、public CyclicBarrier(int parties) {

    }

    参数parties指让多少个线程或者任务等待至barrier状态;参数barrierAction为当这些线程都达到barrier状态时会执行的内容。

    然后CyclicBarrier中最重要的方法就是await方法,它有2个重载版本:

    1、public int await() throwsInterruptedException, BrokenBarrierException { };

    2、public int await(longtimeout, TimeUnit unit)throwsInterruptedException,BrokenBarrierException,TimeoutException { };

    第一个版本比较常用,用来挂起当前线程,直至所有线程都到达barrier状态再同时执行后续任务;

    第二个版本是让这些线程等待至一定的时间,如果还有线程没有到达barrier状态就直接让到达barrier的线程执行后续任务。

    下面举几个例子就明白了:

    假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:

    public class Test {

        public static void main(String[] args) {

            intN = 4;

            CyclicBarrier barrier  = new CyclicBarrier(N);

            for(int i=0;i

                new Writer(barrier).start();

        }

        static class Writer extendsThread{

            private CyclicBarrier cyclicBarrier;

            public Writer(CyclicBarrier cyclicBarrier) {

                this.cyclicBarrier = cyclicBarrier;

            }

            @Override

            public  void  run() {

                System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

                try{

                    Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                    System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                    cyclicBarrier.await();

                } catch(InterruptedException e) {

                    e.printStackTrace();

                }catch(BrokenBarrierException e){

                    e.printStackTrace();

                }

                System.out.println("所有线程写入完毕,继续处理其他任务...");

            }

        }

    }

    执行结果:

    线程Thread-0正在写入数据...

    线程Thread-3正在写入数据...

    线程Thread-2正在写入数据...

    线程Thread-1正在写入数据...

    线程Thread-2写入数据完毕,等待其他线程写入完毕

    线程Thread-0写入数据完毕,等待其他线程写入完毕

    线程Thread-3写入数据完毕,等待其他线程写入完毕

    线程Thread-1写入数据完毕,等待其他线程写入完毕

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

    当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

    如果说想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:

    public class Test {

        public static void main(String[] args) {

            intN = 4;

            CyclicBarrier barrier  = new CyclicBarrier(N,newRunnable() {

                @Override

                public void run() {

                    System.out.println("当前线程"+Thread.currentThread().getName());  

                }

            });

           for(inti=0;i

                new  Writer(barrier).start();

        }

        static class Writer extends  Thread{

            private  CyclicBarrier cyclicBarrier;

            public  Writer(CyclicBarrier cyclicBarrier) {

                this.cyclicBarrier = cyclicBarrier;

            }

            @Override

            public void run() {

                System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

                try{

                    Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                    System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                    cyclicBarrier.await();

                } catch(InterruptedException e) {

                    e.printStackTrace();

                }catch(BrokenBarrierException e){

                    e.printStackTrace();

                }

                System.out.println("所有线程写入完毕,继续处理其他任务...");

            }

        }

    }

    运行结果:

    线程Thread-0正在写入数据...

    线程Thread-1正在写入数据...

    线程Thread-2正在写入数据...

    线程Thread-3正在写入数据...

    线程Thread-0写入数据完毕,等待其他线程写入完毕

    线程Thread-1写入数据完毕,等待其他线程写入完毕

    线程Thread-2写入数据完毕,等待其他线程写入完毕

    线程Thread-3写入数据完毕,等待其他线程写入完毕

    当前线程Thread-3

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    所有线程写入完毕,继续处理其他任务...

    从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable。

    下面看一下为await指定时间的效果:

    public class Test {

        public static void main(String[] args) {

            intN = 4;

            CyclicBarrier barrier  = new  CyclicBarrier(N);

                for(inti=0;i

                if(i

                    new Writer(barrier).start();

                else{

                    try{

                        Thread.sleep(5000);

                    } catch(InterruptedException e) {

                        e.printStackTrace();

                    }

                    new  Writer(barrier).start();

                }

            }

        }

        static class  Writer extends  Thread{

            private CyclicBarrier cyclicBarrier;

            public  Writer(CyclicBarrier cyclicBarrier) {

                this.cyclicBarrier = cyclicBarrier;

            }

            @Override

            public  void  run() {

                System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

                try{

                    Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                    System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                    try{

                        cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);

                    } catch(TimeoutException e) {

                        // TODO Auto-generated catch block

                        e.printStackTrace();

                    }

                } catch(InterruptedException e) {

                    e.printStackTrace();

                }catch(BrokenBarrierException e){

                    e.printStackTrace();

                }

                System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");

            }

        }

    }

    执行结果:

    线程Thread-0正在写入数据...

    线程Thread-2正在写入数据...

    线程Thread-1正在写入数据...

    线程Thread-2写入数据完毕,等待其他线程写入完毕

    线程Thread-0写入数据完毕,等待其他线程写入完毕

    线程Thread-1写入数据完毕,等待其他线程写入完毕

    线程Thread-3正在写入数据...

    java.util.concurrent.TimeoutException

    Thread-1所有线程写入完毕,继续处理其他任务...

    Thread-0所有线程写入完毕,继续处理其他任务...

        at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)

        at java.util.concurrent.CyclicBarrier.await(Unknown Source)

        at com.cxh.test1.Test$Writer.run(Test.java:58)

    java.util.concurrent.BrokenBarrierException

        at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)

        at java.util.concurrent.CyclicBarrier.await(Unknown Source)

        at com.cxh.test1.Test$Writer.run(Test.java:58)

    java.util.concurrent.BrokenBarrierException

        at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)

        at java.util.concurrent.CyclicBarrier.await(Unknown Source)

        at com.cxh.test1.Test$Writer.run(Test.java:58)

    Thread-2所有线程写入完毕,继续处理其他任务...

    java.util.concurrent.BrokenBarrierException

    线程Thread-3写入数据完毕,等待其他线程写入完毕

        at java.util.concurrent.CyclicBarrier.dowait(Unknown Source)

        at java.util.concurrent.CyclicBarrier.await(Unknown Source)

        at com.cxh.test1.Test$Writer.run(Test.java:58)

    Thread-3所有线程写入完毕,继续处理其他任务...

    上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。

    另外CyclicBarrier是可以重用的,看下面这个例子:

    public class  Test {

        public  static  void  main(String[] args) {

            intN = 4;

            CyclicBarrier barrier  = newCyclicBarrier(N);

            for(int  i=0;i

                new  Writer(barrier).start();

            }

            try{

                Thread.sleep(25000);

            } catch(InterruptedException e) {

                e.printStackTrace();

            }

            System.out.println("CyclicBarrier重用");

            for(inti=0;i

                new  Writer(barrier).start();

            }

        }

        static class Writer extends  Thread{

            private  CyclicBarrier cyclicBarrier;

            public  Writer(CyclicBarrier cyclicBarrier) {

                this.cyclicBarrier = cyclicBarrier;

            }

            @Override

            public void  run() {

                System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");

                try{

                    Thread.sleep(5000);      //以睡眠来模拟写入数据操作

                    System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                    cyclicBarrier.await();

                } catch(InterruptedException e) {

                    e.printStackTrace();

                }catch(BrokenBarrierException e){

                    e.printStackTrace();

                }

                System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");

            }

        }

    }

    执行结果:

    线程Thread-0正在写入数据...

    线程Thread-1正在写入数据...

    线程Thread-3正在写入数据...

    线程Thread-2正在写入数据...

    线程Thread-1写入数据完毕,等待其他线程写入完毕

    线程Thread-3写入数据完毕,等待其他线程写入完毕

    线程Thread-2写入数据完毕,等待其他线程写入完毕

    线程Thread-0写入数据完毕,等待其他线程写入完毕

    Thread-0所有线程写入完毕,继续处理其他任务...

    Thread-3所有线程写入完毕,继续处理其他任务...

    Thread-1所有线程写入完毕,继续处理其他任务...

    Thread-2所有线程写入完毕,继续处理其他任务...

    CyclicBarrier重用

    线程Thread-4正在写入数据...

    线程Thread-5正在写入数据...

    线程Thread-6正在写入数据...

    线程Thread-7正在写入数据...

    线程Thread-7写入数据完毕,等待其他线程写入完毕

    线程Thread-5写入数据完毕,等待其他线程写入完毕

    线程Thread-6写入数据完毕,等待其他线程写入完毕

    线程Thread-4写入数据完毕,等待其他线程写入完毕

    Thread-4所有线程写入完毕,继续处理其他任务...

    Thread-5所有线程写入完毕,继续处理其他任务...

    Thread-6所有线程写入完毕,继续处理其他任务...

    Thread-7所有线程写入完毕,继续处理其他任务...

    从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。

    三.Semaphore用法

    Semaphore翻译成字面意思为 信号量,Semaphore可以控同时访问的线程个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。

    Semaphore类位于java.util.concurrent包下,它提供了2个构造器:

    1、public  Semaphore(intpermits) {          //参数permits表示许可数目,即同时可以允许多少线程进行访问

        sync = new NonfairSync(permits);

    }

    2、public  Semaphore(intpermits, booleanfair) {    //这个多了一个参数fair表示是否是公平的,即等待时间越久的越先获取许可

        sync = (fair)? new  FairSync(permits) : newNonfairSync(permits);

    }

    下面说一下Semaphore类中比较重要的几个方法,首先是acquire()、release()方法:

    public void  acquire() throws  InterruptedException {  }     //获取一个许可

    public void  acquire(intpermits) throws  InterruptedException { }    //获取permits个许可

    public  void  release() { }          //释放一个许可

    public  void  release(intpermits) { }    //释放permits个许可

    acquire()用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可。

    release()用来释放许可。注意,在释放许可之前,必须先获获得许可。

    这4个方法都会被阻塞,如果想立即得到执行结果,可以使用下面几个方法:

    public  boolean  tryAcquire() { };    //尝试获取一个许可,若获取成功,则立即返回true,若获取失败,则立即返回false

    public  boolean  tryAcquire(longtimeout, TimeUnit unit) throwsInterruptedException { };  //尝试获取一个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

    public  boolean  tryAcquire(intpermits) { }; //尝试获取permits个许可,若获取成功,则立即返回true,若获取失败,则立即返回false

    public  boolean  tryAcquire(intpermits, longtimeout, TimeUnit unit) throwsInterruptedException { }; //尝试获取permits个许可,若在指定的时间内获取成功,则立即返回true,否则则立即返回false

    另外还可以通过availablePermits()方法得到可用的许可数目。

    下面通过一个例子来看一下Semaphore的具体使用:

    假若一个工厂有5台机器,但是有8个工人,一台机器同时只能被一个工人使用,只有使用完了,其他工人才能继续使用。那么我们就可以通过Semaphore来实现:

    public  class  Test {

        public  static  void  main(String[] args) {

            intN = 8;            //工人数

            Semaphore semaphore = newSemaphore(5); //机器数目

            for(inti=0;i

                new  Worker(i,semaphore).start();

        }

        static  class  Worker extends  Thread{

            private  int   num;

            private  Semaphore semaphore;

            public  Worker(intnum,Semaphore semaphore){

                this.num = num;

                this.semaphore = semaphore;

            }

            @Override

            public  void  run() {

                try{

                    semaphore.acquire();

                    System.out.println("工人"+this.num+"占用一个机器在生产...");

                    Thread.sleep(2000);

                    System.out.println("工人"+this.num+"释放出机器");

                    semaphore.release();          

                } catch(InterruptedException e) {

                    e.printStackTrace();

                }

            }

        }

    }

    执行结果:

    工人0占用一个机器在生产...

    工人1占用一个机器在生产...

    工人2占用一个机器在生产...

    工人4占用一个机器在生产...

    工人5占用一个机器在生产...

    工人0释放出机器

    工人2释放出机器

    工人3占用一个机器在生产...

    工人7占用一个机器在生产...

    工人4释放出机器

    工人5释放出机器

    工人1释放出机器

    工人6占用一个机器在生产...

    工人3释放出机器

    工人7释放出机器

    工人6释放出机器

    下面对上面说的三个辅助类进行一个总结:

    1)CountDownLatch和CyclicBarrier都能够实现线程之间的等待,只不过它们侧重点不同:

    CountDownLatch一般用于某个线程A等待若干个其他线程执行完任务之后,它才执行;

    而CyclicBarrier一般用于一组线程互相等待至某个状态,然后这一组线程再同时执行;

    另外,CountDownLatch是不能够重用的,而CyclicBarrier是可以重用的。

    2)Semaphore其实和锁有点类似,它一般用于控制对某组资源的访问权限。

    相关文章

      网友评论

          本文标题:CountDownLatch、CyclicBarrier、Sem

          本文链接:https://www.haomeiwen.com/subject/kxqqnxtx.html