对象的本质
在分析isa
前,先分析一下我们常见的解除最多的——对象。为了探究OC对象的本质是什么,就有必要了解Clang
。
Clang是⼀个C语⾔、C++、Objective-C语⾔的轻量级编译器。源代码发布于BSD协议下。Clang将⽀持其普通lambda表达式、返回类型的简化处理以及更好的处理constexpr关键字。Clang是⼀个由Apple主导编写,基于LLVM的C/C++/Objective-C编译器。
-
利用Clang解析OC文件
将OC代码通过Clang命令解析,就能探究OC对象低层是怎样的一个数据形式。用到的命令:clang -rewrite-objc main.m -o main.cpp
,目的是将目标文件编译成C++的文件,这是基于OC文件的一种编译方式,如果要对UIKit框架下的UI文件比如ViewController.m
。
// 模拟器sdk路径替换自己的即可
clang -rewrite-objc -fobjc-arc -fobjc-runtime=ios-12.0.0 -isysroot /
Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator12.0.sdk ViewController.m
xcode
安装的时候顺带安装了xcrun
命令,xcrun
命令在clang
的基础上进⾏了
⼀些封装,要更好⽤⼀些
xcrun -sdk iphonesimulator clang -arch arm64 -rewrite-objc main.m -o main-arm64.cpp
-- iPhoneSimulator
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m -o main�arm64.cpp
-- iPhone
通过搜索定义的对象名
// 对象的本质——结构体
struct Book_IMPL {
struct NSObject_IMPL NSObject_IVARS;
NSString *_name;
};
// @property (nonatomic, copy) NSString *bookName;
/* @end */
// @implementation Book
static NSString * _I_Book_name(Book * self, SEL _cmd) { return (*(NSString **)((char *)self + OBJC_IVAR_$Book$_name)); }
extern "C" __declspec(dllimport) void objc_setProperty (id, SEL, long, id, bool, bool);
static void _I_Book_setName_(Book * self, SEL _cmd, NSString *name) {
objc_setProperty (self, _cmd, __OFFSETOFIVAR__(struct Book, _name), (id)name, 0, 1);
}
// @end
对象:对象的本质是结构体。
isa的分析
利用之前的objc781源码工程进行底层isa
的分析:
alloc -> _objc_rootAlloc -> callAlloc -> _objc_rootAllocWithZone -> _class_createInstanceFromZone
会进入以下的代码
static ALWAYS_INLINE id
_class_createInstanceFromZone(Class cls, size_t extraBytes, void *zone,
int construct_flags = OBJECT_CONSTRUCT_NONE,
bool cxxConstruct = true,
size_t *outAllocatedSize = nil)
{
ASSERT(cls->isRealized());
// Read class's info bits all at once for performance
bool hasCxxCtor = cxxConstruct && cls->hasCxxCtor();
bool hasCxxDtor = cls->hasCxxDtor();
bool fast = cls->canAllocNonpointer();
size_t size;
size = cls->instanceSize(extraBytes);
if (outAllocatedSize) *outAllocatedSize = size;
id obj;
if (zone) {
obj = (id)malloc_zone_calloc((malloc_zone_t *)zone, 1, size);
} else {
obj = (id)calloc(1, size);
}
if (slowpath(!obj)) {
if (construct_flags & OBJECT_CONSTRUCT_CALL_BADALLOC) {
return _objc_callBadAllocHandler(cls);
}
return nil;
}
if (!zone && fast) {
obj->initInstanceIsa(cls, hasCxxDtor);
} else {
// Use raw pointer isa on the assumption that they might be
// doing something weird with the zone or RR.
obj->initIsa(cls);
}
if (fastpath(!hasCxxCtor)) {
return obj;
}
construct_flags |= OBJECT_CONSTRUCT_FREE_ONFAILURE;
return object_cxxConstructFromClass(obj, cls, construct_flags);
}
其中 initInstanceIsa, initIsa
就发现isa
踪迹;继续跟入:
inline void
objc_object::initInstanceIsa(Class cls, bool hasCxxDtor)
{
ASSERT(!cls->instancesRequireRawIsa());
ASSERT(hasCxxDtor == cls->hasCxxDtor());
initIsa(cls, true, hasCxxDtor);
}
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
if (!nonpointer) {
isa = isa_t((uintptr_t)cls);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
分析这段代码,isa = isa_t((uintptr_t)cls);
这段代码是一个关键点,进入isa_t
:
union isa_t {
isa_t() { }
isa_t(uintptr_t value) : bits(value) { }
Class cls;
uintptr_t bits;
#if defined(ISA_BITFIELD)
struct {
ISA_BITFIELD; // defined in isa.h
};
#endif
};
哦豁,ISA_BITFIELD; // defined in isa.h
该来的它终究还是来了,终于看到了isa的定义文件,进入发现了下面的代码:
// 针对iOS系统时的isa
# if __arm64__
# define ISA_MASK 0x0000000ffffffff8ULL
# define ISA_MAGIC_MASK 0x000003f000000001ULL
# define ISA_MAGIC_VALUE 0x000001a000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 19
# define RC_ONE (1ULL<<45)
# define RC_HALF (1ULL<<18)
// 针对macOS系统时的isa
# elif __x86_64__
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
# else
# error unknown architecture for packed isa
# endif
// SUPPORT_PACKED_ISA
#endif
这就是isa
的结构,在iOS和macOS有这不同的字节占比,却有着相同的定义:
nonpointer:
表示是否对 isa 指针开启指针优化,0:纯isa指针,1:不⽌是类对象地址,isa 中包含了类信息、对象的引⽤计数等;
has_assoc:
关联对象标志位,0没有,1存在;
has_cxx_dtor:
该对象是否有 C++ 或者 Objc 的析构器,如果有析构函数,则需要做析构逻辑, 如果没有,则可以更快的释放对象;
shiftcls:
存储类指针的值。开启指针优化的情况下,在 arm64 架构中有 33 位⽤来存储类指针;
magic:
⽤于调试器判断当前对象是真的对象还是没有初始化的空间;
weakly_referenced:
志对象是否被指向或者曾经指向⼀个 ARC 的弱变量,没有弱引⽤的对象可以更快释放;
deallocating:
标志对象是否正在释放内存;
has_sidetable_rc:
当对象引⽤技术⼤于 10 时,则需要借⽤该变量存储进位;
extra_rc:
当表示该对象的引⽤计数值,实际上是引⽤计数值减 1,
例如,如果对象的引⽤计数为 10,那么 extra_rc 为 9。如果引⽤计数⼤于 10,则需要使⽤到下⾯的 has_sidetable_rc。
通过以下图片可以更加形象的理解isa
的结构:
网友评论