美文网首页
Prophet模型使用for time-series时间序列模型

Prophet模型使用for time-series时间序列模型

作者: 数据小新手 | 来源:发表于2018-12-19 11:48 被阅读0次
    Decomposable

    y(t)=g(t)+s(t)+\epsilon_t

    • g(t): piecewise linear or logistic growth curve for modelling non-periodic changes in time series
    • s(t): periodic changes (e.g. weekly/yearly seasonality)
    • h(t): effects of holidays (user provided) with irregular schedules
    • εt: error term accounts for any unusual changes not accommodated by the model
    Trend

    增长的最大值或缩减的最小值,可以设置cap来限制范围

    changepoint

    可以设置关键点,比如新品发布,不可见的灾难,可以自己学习到也,可以手动设定

    Seasonality

    s(t)=\sum(a_ncos(\frac{2\pi nt}{P})+b_nsin(\frac{2\pi nt}{P}))

    P is the period (365.25 for yearly data and 7 for weekly data)

    Warning:

    适用于连续的数据,每天或每小时都有数据,不太适合量化数据。因为交易时间有限
    Reference:

    https://www.analyticsvidhya.com/blog/2018/05/generate-accurate-forecasts-facebook-prophet-python-r/

    相关文章

      网友评论

          本文标题:Prophet模型使用for time-series时间序列模型

          本文链接:https://www.haomeiwen.com/subject/lcadkqtx.html