美文网首页
POJ 1442 Blackbox

POJ 1442 Blackbox

作者: lily_blog | 来源:发表于2017-11-05 18:56 被阅读0次

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

    ADD (x): put element x into Black Box;
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

    Let us examine a possible sequence of 11 transactions:

    Example 1

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)

    1 ADD(3)      0 3   
    
    2 GET         1 3                                    3
    
    3 ADD(1)      1 1, 3   
    
    4 GET         2 1, 3                                 3
    
    5 ADD(-4)     2 -4, 1, 3   
    
    6 ADD(2)      2 -4, 1, 2, 3   
    
    7 ADD(8)      2 -4, 1, 2, 3, 8   
    
    8 ADD(-1000)  2 -1000, -4, 1, 2, 3, 8   
    
    9 GET         3 -1000, -4, 1, 2, 3, 8                1
    
    10 GET        4 -1000, -4, 1, 2, 3, 8                2
    
    11 ADD(2)     4 -1000, -4, 1, 2, 2, 3, 8   
    

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

    Let us describe the sequence of transactions by two integer arrays:

    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input
    
    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6
    Sample Output
    
    3
    3
    1
    

    问题分析与解题思路

    题意

    输入一行数A[];再输入一行数u[];让你输出前[]的前u[p]个数据中,第p+1小的数,正如给出的例子

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6
    前1个数中第1小的数是3;
    前2个数中第2小的数是3;
    前6个数中第3小的数是1;
    前6个数中第4小的数是2;
    

    通过维护一个最大堆,一个最小堆进行求解。

    • 最大堆中存放第1到第i-1小的数
    • 最小堆中存放第i-1到第n小的数(n为当前数字总数)

    所以最小堆的堆顶就是我们要的结果。

    每插入一个数,我们先把它放入最小堆,更新最小堆,如果最小堆堆顶元素小于最大堆堆顶元素,说明前i-1个最小的数据需要更新,只要将小堆堆顶和大堆堆顶元素交换即可。再把最小堆的堆顶元素弹出输出,然后赋值给最大堆堆顶。(因为下一次所求不是第i小而是第i+1小的元素)

    数据结构与算法设计及其主要代码段

    定义堆

    priority_queue<int> q2;  //最大堆(默认);
    priority_queue<int,vector<int>,greater<int> > q1;//最小堆(自定义)
    

    插入与get

    for(i=0;i<m;i++)
        {
            scanf("%d",&k);
            while(j<k)
            {
                q1.push(A[j]);
                // 最小堆堆顶元素小于最大堆堆顶元素
                if(!q2.empty() && q1.top()<q2.top())
                {
                    int t;
                    t=q1.top();
                    q1.pop();
                    q1.push(q2.top());
                    q2.pop();
                    q2.push(t);
                }
                j++;
            }
            // 碰到get弹出输出最小堆堆顶,并加入最大堆
            printf("%d\n",q1.top());
            q2.push(q1.top());
            q1.pop();
        }
    

    程序运行结果及分析

    A. 算法复杂度

    • 建堆:O(n)
    • 插入删除:O(logn)
    • 总的复杂度:O(n)

    B. 运行时间

    内存:2260kB, 时间:52ms(数据来自openjudge)

    心得体会与总结

    1. 使用stl的priority_queue会让本题难度降低很多。
    2. 本题最重要的就是想清楚两个堆中所存的元素,最大堆中存放第1到第i-1小的数,最小堆中存放第i-1到第n小的数(n为当前数字总数。
    3. 本题巧妙之处在于,一般堆都是用来解决最大,最小问题,两个堆的使用可以解决第k大/小问题。

    相关文章

      网友评论

          本文标题:POJ 1442 Blackbox

          本文链接:https://www.haomeiwen.com/subject/lcshmxtx.html