美文网首页深入理解计算机系统
计算机网络-运输层、应用层

计算机网络-运输层、应用层

作者: MachinePlay | 来源:发表于2019-08-08 22:21 被阅读0次

    一、运输层协议

    网络层只把分组发送到目的主机,但是真正通信的并不是主机而是主机中的进程。传输层提供了进程间的逻辑通信,传输层向高层用户屏蔽了下面网络层的核心细节,使应用程序看起来像是在两个传输层实体之间有一条端到端的逻辑通信信道。

    UDP 和 TCP 的特点

    • 用户数据报协议 UDP(User Datagram Protocol)是无连接的,尽最大可能交付,没有拥塞控制,面向报文(对于应用程序传下来的报文不合并也不拆分,只是添加 UDP 首部),支持一对一、一对多、多对一和多对多的交互通信。

    • 传输控制协议 TCP(Transmission Control Protocol)是面向连接的,提供可靠交付,有流量控制,拥塞控制,提供全双工通信,面向字节流(把应用层传下来的报文看成字节流,把字节流组织成大小不等的数据块),每一条 TCP 连接只能是点对点的(一对一)。

    UDP 首部格式

    image.png

    首部字段只有 8 个字节,包括源端口、目的端口、长度、检验和。12 字节的伪首部是为了计算检验和临时添加的。

    TCP 首部格式

    image.png
    • 序号 :用于对字节流进行编号,例如序号为 301,表示第一个字节的编号为 301,如果携带的数据长度为 100 字节,那么下一个报文段的序号应为 401。

    • 确认号 :期望收到的下一个报文段的序号。例如 B 正确收到 A 发送来的一个报文段,序号为 501,携带的数据长度为 200 字节,因此 B 期望下一个报文段的序号为 701,B 发送给 A 的确认报文段中确认号就为 701。

    • 数据偏移 :指的是数据部分距离报文段起始处的偏移量,实际上指的是首部的长度。

    • 确认 ACK :当 ACK=1 时确认号字段有效,否则无效。TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置 1。

    • 同步 SYN :在连接建立时用来同步序号。当 SYN=1,ACK=0 时表示这是一个连接请求报文段。若对方同意建立连接,则响应报文中 SYN=1,ACK=1。

    • 终止 FIN :用来释放一个连接,当 FIN=1 时,表示此报文段的发送方的数据已发送完毕,并要求释放连接。

    • 窗口 :窗口值作为接收方让发送方设置其发送窗口的依据。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。

    超时重传时间

    RTTOs=4*RTTd+RTTs

    TCP连接的阶段

    • 建立连接
    • 传输数据
    • 关闭连接

    TCP 的三次握手

    连接建立


    image.png

    假设 A 为客户端,B 为服务器端。

    首先 B 处于 LISTEN(监听)状态,等待客户的连接请求。

    A 向 B 发送连接请求报文,传输控制块,SYN=1,ACK=0,选择一个初始的序号 x。(syn不能携带数据)

    B 收到连接请求报文,如果同意建立连接,新建一个传输控制块,则向 A 发送连接确认报文,SYN=1,ACK=1,确认号为 x+1,同时也选择一个初始的序号 y。

    A 收到 B 的连接确认报文后,还要向 B 发出确认,确认号为 y+1,序号为 x+1。//ack可以携带数据,如果不携带,不消耗序号

    B 收到 A 的确认后,连接建立。
    上面提出的叫做三报文握手。
    四报文握手🤝:B发给A的报文可以拆分成两个
    先发一个确认ACK=1,ack=x+1;
    再发一个同步 SYN=1,seq=y

    A最后为什么要发送一个确认?
    防止已经失效的连接再次连接上。a发了一个i,路上堵了很久,重传,连接结束后,i到了,B以为a又想连接,回复一个就建立了,但A没理,B认为建立了,就白白浪费了

    TCP四次握手

    连接释放


    image.png

    以下描述不讨论序号和确认号,因为序号和确认号的规则比较简单。并且不讨论 ACK,因为 ACK 在连接建立之后都为 1。

    A 发送连接释放报文,FIN=1。

    B 收到之后发出确认,此时 TCP 属于半关闭状态,B 能向 A 发送数据但是 A 不能向 B 发送数据。

    当 B 不再需要连接时,发送连接释放报文,FIN=1。

    A 收到后发出确认,进入 TIME-WAIT 状态,等待 2 MSL(最大报文存活时间)后释放连接。

    B 收到 A 的确认后释放连接。

    四次挥手的原因

    客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器会发送 FIN 连接释放报文。

    TIME_WAIT

    客户端接收到服务器端的 FIN 报文后进入此状态,此时并不是直接进入 CLOSED 状态,还需要等待一个时间计时器设置的时间 2MSL。这么做有两个理由:

    • 确保最后一个确认报文能够到达。如果 B 没收到 A 发送来的确认报文,那么就会重新发送连接释放请求报文,A 等待一段时间就是为了处理这种情况的发生。

    • 等待一段时间是为了让本连接持续时间内所产生的所有报文都从网络中消失,使得下一个新的连接不会出现旧的连接请求报文。

    滑动窗口

    TCP 滑动窗口
    窗口是缓存的一部分,用来暂时存放字节流。发送方和接收方各有一个窗口,接收方通过 TCP 报文段中的窗口字段告诉发送方自己的窗口大小,发送方根据这个值和其它信息设置自己的窗口大小。

    发送窗口内的字节都允许被发送,接收窗口内的字节都允许被接收。如果发送窗口左部的字节已经发送并且收到了确认,那么就将发送窗口向右滑动一定距离,直到左部第一个字节不是已发送并且已确认的状态;接收窗口的滑动类似,接收窗口左部字节已经发送确认并交付主机,就向右滑动接收窗口。

    接收窗口只会对窗口内最后一个按序到达的字节进行确认,例如接收窗口已经收到的字节为 {31, 34, 35},其中 {31} 按序到达,而 {34, 35} 就不是,因此只对字节 31 进行确认。发送方得到一个字节的确认之后,就知道这个字节之前的所有字节都已经被接收。


    image.png

    窗口内无需确认
    接收后累积累确认,返回顺序收到最小的确认

    SACK选择确认

    有可能收到的只是乱序,缺少一部分序号,而没有缺失,能不能不重传已经收到的部分,只重传缺失的部分呢?

    SACK 选择重传机制
    接收方先收下 几个不连续的块,然后把这些块的位置告诉发送方,让他重传的时候不要重传这些块。
    在TCP首部加上允许SACK的标志,双方必须实现商定好。由于首部附加数据最大只有40字节,而一个边界就需要4字节,最多只能指明

    流量控制

    流量控制是为了控制发送方发送速率,保证接收方来得及接收。

    接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

    TCP 拥塞控制

    如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。


    image.png

    TCP 主要通过四个算法来进行拥塞控制:慢开始、拥塞避免、快重传、快恢复。

    发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。

    为了便于讨论,做如下假设:

    接收方有足够大的接收缓存,因此不会发生流量控制;
    虽然 TCP 的窗口基于字节,但是这里设窗口的大小单位为报文段。


    image.png

    1. 慢开始与拥塞避免

    发送的最初执行慢开始,令 cwnd = 1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 ...

    注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能性也就更高。设置一个慢开始门限 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。

    如果出现了超时,则令 ssthresh = cwnd / 2,然后重新执行慢开始。

    2. 快重传与快恢复

    在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2 的确认。

    在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3

    在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd / 2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。

    慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。


    image.png

    二、应用层协议

    域名系统

    DNS 是一个分布式数据库,提供了主机名和 IP 地址之间相互转换的服务。这里的分布式数据库是指,每个站点只保留它自己的那部分数据。

    域名具有层次结构,从上到下依次为:根域名、顶级域名、二级域名。 image.png

    DNS 可以使用 UDP 或者 TCP 进行传输,使用的端口号都为 53。大多数情况下 DNS 使用 UDP 进行传输,这就要求域名解析器和域名服务器都必须自己处理超时和重传从而保证可靠性。在两种情况下会使用 TCP 进行传输:

    • 如果返回的响应超过的 512 字节(UDP 最大只支持 512 字节的数据)。
    • 区域传送(区域传送是主域名服务器向辅助域名服务器传送变化的那部分数据)。

    DNS查询,两种

    迭代式

    本地域名服务器向根域名服务器查询时一般使用迭代查询
    主机向本地域名服务器查询后,如果本地域名服务器向根服务器发送请求,根服务器如果么有查询到ip,就会告知本地域名服务器向其他根服务器查询,直到查完或者查不到。

    递归式

    主机向本地域名服务器查询,如果查不到,本地域名服务器就以客户的身份分向其他根域名服务器请求,其他服务器依次。


    image.png

    文件传送协议

    FTP 使用 TCP 进行连接,它需要两个连接来传送一个文件:

    • 控制连接:服务器打开端口号 21 等待客户端的连接,客户端主动建立连接后,使用这个连接将客户端的命令传送给服务器,并传回服务器的应答。
    • 数据连接:用来传送一个文件数据。

    根据数据连接是否是服务器端主动建立,FTP 有主动和被动两种模式:

    • 主动模式:服务器端主动建立数据连接,其中服务器端的端口号为 20,客户端的端口号随机,但是必须大于 1024,因为 0~1023 是熟知端口号。


      image.png
    • 被动模式:客户端主动建立数据连接,其中客户端的端口号由客户端自己指定,服务器端的端口号随机。


      image.png

      主动模式要求客户端开放端口号给服务器端,需要去配置客户端的防火墙。被动模式只需要服务器端开放端口号即可,无需客户端配置防火墙。但是被动模式会导致服务器端的安全性减弱,因为开放了过多的端口号。

    DHCP动态主机配置协议

    DHCP (Dynamic Host Configuration Protocol) 提供了即插即用的连网方式,用户不再需要手动配置 IP 地址等信息。

    DHCP 配置的内容不仅是 IP 地址,还包括子网掩码、网关 IP 地址。

    DHCP 工作过程如下:

    • 客户端发送 Discover 报文,该报文的目的地址为 255.255.255.255:67,源地址为 0.0.0.0:68,被放入 UDP 中,该报文被广播到同一个子网的所有主机上。如果客户端和 DHCP 服务器不在同一个子网,就需要使用中继代理。
    • DHCP 服务器收到 Discover 报文之后,发送 Offer 报文给客户端,该报文包含了客户端所需要的信息。因为客户端可能收到多个 DHCP 服务器提供的信息,因此客户端需要进行选择。
    • 如果客户端选择了某个 DHCP 服务器提供的信息,那么就发送 Request 报文给该 DHCP 服务器。
    • DHCP 服务器发送 Ack 报文,表示客户端此时可以使用提供给它的信息。
    image.png

    远程登录协议

    TELNET 用于登录到远程主机上,并且远程主机上的输出也会返回。

    TELNET 可以适应许多计算机和操作系统的差异,例如不同操作系统系统的换行符定义。

    电子邮件协议

    一个电子邮件系统由三部分组成:用户代理、邮件服务器以及邮件协议。

    邮件协议包含发送协议和读取协议,发送协议常用 SMTP,读取协议常用 POP3 和 IMAP。

    1. SMTP

    SMTP 只能发送 ASCII 码,而互联网邮件扩充 MIME 可以发送二进制文件。MIME 并没有改动或者取代 SMTP,而是增加邮件主体的结构,定义了非 ASCII 码的编码规则。

    image.png

    POP3 的特点是只要用户从服务器上读取了邮件,就把该邮件删除。但最新版本的 POP3 可以不删除邮件。

    IMAP 协议中客户端和服务器上的邮件保持同步,如果不手动删除邮件,那么服务器上的邮件也不会被删除。IMAP 这种做法可以让用户随时随地去访问服务器上的邮件。

    常用端口

    应用 应用层协议 端口号 传输层协议 备注
    域名解析 DNS 53 UDP/TCP 长度超过 512 字节时使用 TCP
    动态主机配置协议 DHCP 67/68 UDP
    简单网络管理协议 SNMP 161/162 UDP
    文件传送协议 FTP 20/21 TCP 控制连接 21,数据连接 20
    远程终端协议 TELNET 23 TCP
    超文本传送协议 HTTP 80 TCP
    简单邮件传送协议 SMTP 25 TCP
    邮件读取协议 POP3 110 TCP
    网际报文存取协议 IMAP 143 TCP

    打开网页过程

    Web 页面请求过程

    1. DHCP 配置主机信息

    • 假设主机最开始没有 IP 地址以及其它信息,那么就需要先使用 DHCP 来获取。

    • 主机生成一个 DHCP 请求报文,并将这个报文放入具有目的端口 67 和源端口 68 的 UDP 报文段中。

    • 该报文段则被放入在一个具有广播 IP 目的地址(255.255.255.255) 和源 IP 地址(0.0.0.0)的 IP 数据报中。

    • 该数据报则被放置在 MAC 帧中,该帧具有目的地址 FF:FF:FF:FF:FF:FF,将广播到与交换机连接的所有设备。

    • 连接在交换机的 DHCP 服务器收到广播帧之后,不断地向上分解得到 IP 数据报、UDP 报文段、DHCP 请求报文,之后生成 DHCP ACK 报文,该报文包含以下信息:IP 地址、DNS 服务器的 IP 地址、默认网关路由器的 IP 地址和子网掩码。该报文被放入 UDP 报文段中,UDP 报文段有被放入 IP 数据报中,最后放入 MAC 帧中。

    • 该帧的目的地址是请求主机的 MAC 地址,因为交换机具有自学习能力,之前主机发送了广播帧之后就记录了 MAC 地址到其转发接口的交换表项,因此现在交换机就可以直接知道应该向哪个接口发送该帧。

    • 主机收到该帧后,不断分解得到 DHCP 报文。之后就配置它的 IP 地址、子网掩码和 DNS 服务器的 IP 地址,并在其 IP 转发表中安装默认网关。

    2. ARP 解析 MAC 地址

    • 主机通过浏览器生成一个 TCP 套接字,套接字向 HTTP 服务器发送 HTTP 请求。为了生成该套接字,主机需要知道网站的域名对应的 IP 地址。

    • 主机生成一个 DNS 查询报文,该报文具有 53 号端口,因为 DNS 服务器的端口号是 53。

    • 该 DNS 查询报文被放入目的地址为 DNS 服务器 IP 地址的 IP 数据报中。

    • 该 IP 数据报被放入一个以太网帧中,该帧将发送到网关路由器。

    • DHCP 过程只知道网关路由器的 IP 地址,为了获取网关路由器的 MAC 地址,需要使用 ARP 协议。

    • 主机生成一个包含目的地址为网关路由器 IP 地址的 ARP 查询报文,将该 ARP 查询报文放入一个具有广播目的地址(FF:FF:FF:FF:FF:FF)的以太网帧中,并向交换机发送该以太网帧,交换机将该帧转发给所有的连接设备,包括网关路由器。

    • 网关路由器接收到该帧后,不断向上分解得到 ARP 报文,发现其中的 IP 地址与其接口的 IP 地址匹配,因此就发送一个 ARP 回答报文,包含了它的 MAC 地址,发回给主机。

    3. DNS 解析域名

    • 知道了网关路由器的 MAC 地址之后,就可以继续 DNS 的解析过程了。

    • 网关路由器接收到包含 DNS 查询报文的以太网帧后,抽取出 IP 数据报,并根据转发表决定该 IP 数据报应该转发的路由器。

    • 因为路由器具有内部网关协议(RIP、OSPF)和外部网关协议(BGP)这两种路由选择协议,因此路由表中已经配置了网关路由器到达 DNS 服务器的路由表项。

    • 到达 DNS 服务器之后,DNS 服务器抽取出 DNS 查询报文,并在 DNS 数据库中查找待解析的域名。

    • 找到 DNS 记录之后,发送 DNS 回答报文,将该回答报文放入 UDP 报文段中,然后放入 IP 数据报中,通过路由器反向转发回网关路由器,并经过以太网交换机到达主机。

    4. HTTP 请求页面

    • 有了 HTTP 服务器的 IP 地址之后,主机就能够生成 TCP 套接字,该套接字将用于向 Web 服务器发送 HTTP GET 报文。

    • 在生成 TCP 套接字之前,必须先与 HTTP 服务器进行三次握手来建立连接。生成一个具有目的端口 80 的 TCP SYN 报文段,并向 HTTP 服务器发送该报文段。

    • HTTP 服务器收到该报文段之后,生成 TCP SYN ACK 报文段,发回给主机。

    • 连接建立之后,浏览器生成 HTTP GET 报文,并交付给 HTTP 服务器。

    • HTTP 服务器从 TCP 套接字读取 HTTP GET 报文,生成一个 HTTP 响应报文,将 Web 页面内容放入报文主体中,发回给主机。

    • 浏览器收到 HTTP 响应报文后,抽取出 Web 页面内容,之后进行渲染,显示 Web 页面。

    相关文章

      网友评论

        本文标题:计算机网络-运输层、应用层

        本文链接:https://www.haomeiwen.com/subject/ldjbdctx.html