虽然没有完全弄清楚其中的数学内涵,但是觉得有趣,记录一下.
问题
众所周知,一般的PCA(论文中以表示)利用二范数构造损失函数并求解,但是有一个问题就是会对异常值非常敏感. 所以,已经有许多的PCA开始往范数上靠了,不过我所知道的和这篇论文的有些不同.
像是Zou 06年的那篇SPCA中:
注意到,作用在上,以此来获得稀疏化.
这篇论文似乎有些不同,从回归的角度考虑, 一般的回归问题是最小化下列损失函数:
为了减小异常值的影响,改用:
而作者指出,上面的问题可以利用线性规划求解:
回到PCA上,我们希望找到一个方向,样本点到此方向上的距离之和最短(可能理解有误的).
细节
的损失函数
首先,假设输入的数据, 并构成数据矩阵. 首先,作者希望找到一个维的子空间,而样本点到此子空间的距离和最短. 在此之前,需要先讨论距离的计算.
在这里插入图片描述从上图可以看到,一个点到一个超平面的距离并不像普通的欧氏距离一样,实际上,可以这么定义点到子空间的距离:
假设超平面S由刻画(假设其经过原点), 则:
首先,对于一个样本点, 选择一个, 令, 而定义为(假设):
于是容易证明, 也就是.
下面证明, 如果这个使得, 那么就是的距离. 首先证明,在只改变一个坐标的情况下是最小的, 此时:
因为分子是固定的,所以分母越大的距离越短,所以在只改变一个坐标的情况下是如此,下面再利用数学归纳法证明,如果距离最短,那么必须至多只有一个坐标被改变.
的时候容易证明,假设的时候已经成立,证明也成立:
如果已经存在一个坐标相同,那么根据前面的假设可以推得成立,所以必须每个坐标都完全不同. 不失一般性,选取,且假设均不为0, 且.
令,其余部分于保持相同.则距离产生变化的部分为:
所以,新的有一个坐标相同,而且距离更短了,所以也成立.
所以,我们的工作只需要找到最大所对应的即可.
所以,我们的损失函数为:
因为比例的关系,我们可以让而结果不变:
把看成是,那么上面就变成了一个回归问题了. 当然我们并不知道,所以需要进行次运算,来找到使得损失函数最小. 这样,我们就找到了一个维的子空间.
算法如下:
在这里插入图片描述
算法
在这里插入图片描述因为PCA的目的是寻找一个方向,而不是一个子空间,所以需要不断重复寻找子空间的操作,这个地方我没怎么弄懂,不知是否是这样:
- 找到了一个子空间
- 将数据点投影到子空间上
- 寻找新的坐标系,则数据会从-->维
- 在新的数据中重复上面的操作直至.
有几个问题:
投影
对应算法的第4步,其中
需要一提的是,这里应该是作者的笔误,应当为:
理由有二:
首先,投影,那么至少要满足投影后的应当在子空间中才行,以3维样本为例:,
按照修改后的为:
于是, 而按照原先则不成立,
其次,再后续作者给出的例子中也可以发现,作者实际上也是按照修改后的公式进行计算的.
另外,提出一点对于这个投影方式的质疑. 因为找不到其理论部分,所以猜想作者是想按照的方式进行投影,但是正如之前讲的,的最短距离的投影是要选择最大的,而之前选择的并不能保证这一点.
坐标系
论文中也有这么一段话.
在这里插入图片描述既然范数不具备旋转不变性,那么如何保证这种坐标系的选择是合适的呢,还有,这似乎也说明,我们最后选出来的方向应该不是全局最优的吧.
载荷向量
是第k个子空间的载荷向量,所以,所以和SPCA很大的一个区别是它并不是稀疏的.
另外,它还有一个性质,和由张成的子空间正交,这点很好证明,因为.
总的来说,我觉得这个思想还是蛮有意思的,但是总觉得缺乏一点合理的解释,想当然的感觉...
网友评论