美文网首页
从一例状态引发的性能问题谈Flink状态序列化

从一例状态引发的性能问题谈Flink状态序列化

作者: LittleMagic | 来源:发表于2022-10-26 01:01 被阅读0次

    前言

    好久不见(鞠躬

    最近处在转型期,每天忙到飞起,关注具体技术细节的精力自然就比较少了(上一篇许下的周更承诺也食言了 = =)。上周帮助他人快速解决了一个因误用Flink状态类型引发的性能问题,在这里做个quick notes,并简要介绍一下Flink状态序列化方面的基础知识。

    问题及排查

    上游部门同事反馈,一个计算逻辑并不复杂的多流join DataStream API作业频繁发生消费积压、checkpoint失败(现场截图已丢失)。作业拓扑如下图所示。

    为了脱敏所以缩得很小 = =

    按大状态作业的pattern对集群参数进行调优,未果。

    通过Flink Web UI定位到问题点位于拓扑中倒数第二个算子,部分sub-task checkpoint总是过不去。观察Metrics面板,发现有少量数据倾斜,而上下游反压度量值全部为0。

    经过持续观察,存在倾斜的sub-task数据量最多只比其他sub-task多出10%~15%,按照常理不应引起如此严重的性能问题。遂找到对应的TaskManager pod打印火焰图,结果如下。

    可见RocksDB状态读写的耗时极长,大部分时间花在了Kryo序列化上,说明状态内存储了Flink序列化框架原生不支持的对象。直接让相关研发同学show me the code,真相大白:

    private transient MapState<String, HashSet<String>> state1;
    private transient MapState<String, HashSet<String>> state2;
    private transient ValueState<Map<String, String>> state3;
    

    Flink序列化框架内并没有针对HashSet的序列化器,自然会fallback到Kryo。即使这些Set并不算大,状态操作的开销也会急剧上升。当然,ValueState<Map<String, String>>用法也是错误的,应改成MapState<String, String>

    最快的临时解决方法很简单:把所有状态内用到的HashSet全部改成Map<String, Boolean>,同样可以去重。虽然并不优雅,但因为有了原生MapSerializer支持,效率大幅提升。下面简要介绍Flink的状态序列化。

    TypeSerializer

    在我们创建状态句柄所需的描述符StateDescriptor时,要指定状态数据的类型,如:

    ValueStateDescriptor<Integer> stateDesc = new ValueStateDescriptor<>("myState", Integer.class);
    ValueState<Integer> state = this.getRuntimeContext().getState(stateDesc);
    

    与此同时,也就指定了对应数据类型的Serializer。我们知道,TypeSerializer是Flink Runtime序列化机制的底层抽象,状态数据的序列化也不例外。以处理Map类型的MapSerializer为例,代码如下,比较清晰。

    @Internal
    public final class MapSerializer<K, V> extends TypeSerializer<Map<K, V>> {
    
        private static final long serialVersionUID = -6885593032367050078L;
    
        /** The serializer for the keys in the map */
        private final TypeSerializer<K> keySerializer;
    
        /** The serializer for the values in the map */
        private final TypeSerializer<V> valueSerializer;
    
        /**
         * Creates a map serializer that uses the given serializers to serialize the key-value pairs in
         * the map.
         *
         * @param keySerializer The serializer for the keys in the map
         * @param valueSerializer The serializer for the values in the map
         */
        public MapSerializer(TypeSerializer<K> keySerializer, TypeSerializer<V> valueSerializer) {
            this.keySerializer =
                    Preconditions.checkNotNull(keySerializer, "The key serializer cannot be null");
            this.valueSerializer =
                    Preconditions.checkNotNull(valueSerializer, "The value serializer cannot be null.");
        }
    
        // ------------------------------------------------------------------------
        //  MapSerializer specific properties
        // ------------------------------------------------------------------------
    
        public TypeSerializer<K> getKeySerializer() {
            return keySerializer;
        }
    
        public TypeSerializer<V> getValueSerializer() {
            return valueSerializer;
        }
    
        // ------------------------------------------------------------------------
        //  Type Serializer implementation
        // ------------------------------------------------------------------------
    
        @Override
        public boolean isImmutableType() {
            return false;
        }
    
        @Override
        public TypeSerializer<Map<K, V>> duplicate() {
            TypeSerializer<K> duplicateKeySerializer = keySerializer.duplicate();
            TypeSerializer<V> duplicateValueSerializer = valueSerializer.duplicate();
    
            return (duplicateKeySerializer == keySerializer)
                            && (duplicateValueSerializer == valueSerializer)
                    ? this
                    : new MapSerializer<>(duplicateKeySerializer, duplicateValueSerializer);
        }
    
        @Override
        public Map<K, V> createInstance() {
            return new HashMap<>();
        }
    
        @Override
        public Map<K, V> copy(Map<K, V> from) {
            Map<K, V> newMap = new HashMap<>(from.size());
    
            for (Map.Entry<K, V> entry : from.entrySet()) {
                K newKey = keySerializer.copy(entry.getKey());
                V newValue = entry.getValue() == null ? null : valueSerializer.copy(entry.getValue());
    
                newMap.put(newKey, newValue);
            }
    
            return newMap;
        }
    
        @Override
        public Map<K, V> copy(Map<K, V> from, Map<K, V> reuse) {
            return copy(from);
        }
    
        @Override
        public int getLength() {
            return -1; // var length
        }
    
        @Override
        public void serialize(Map<K, V> map, DataOutputView target) throws IOException {
            final int size = map.size();
            target.writeInt(size);
    
            for (Map.Entry<K, V> entry : map.entrySet()) {
                keySerializer.serialize(entry.getKey(), target);
    
                if (entry.getValue() == null) {
                    target.writeBoolean(true);
                } else {
                    target.writeBoolean(false);
                    valueSerializer.serialize(entry.getValue(), target);
                }
            }
        }
    
        @Override
        public Map<K, V> deserialize(DataInputView source) throws IOException {
            final int size = source.readInt();
    
            final Map<K, V> map = new HashMap<>(size);
            for (int i = 0; i < size; ++i) {
                K key = keySerializer.deserialize(source);
    
                boolean isNull = source.readBoolean();
                V value = isNull ? null : valueSerializer.deserialize(source);
    
                map.put(key, value);
            }
    
            return map;
        }
    
        @Override
        public Map<K, V> deserialize(Map<K, V> reuse, DataInputView source) throws IOException {
            return deserialize(source);
        }
    
        @Override
        public void copy(DataInputView source, DataOutputView target) throws IOException {
            final int size = source.readInt();
            target.writeInt(size);
    
            for (int i = 0; i < size; ++i) {
                keySerializer.copy(source, target);
    
                boolean isNull = source.readBoolean();
                target.writeBoolean(isNull);
    
                if (!isNull) {
                    valueSerializer.copy(source, target);
                }
            }
        }
    
        @Override
        public boolean equals(Object obj) {
            return obj == this
                    || (obj != null
                            && obj.getClass() == getClass()
                            && keySerializer.equals(((MapSerializer<?, ?>) obj).getKeySerializer())
                            && valueSerializer.equals(
                                    ((MapSerializer<?, ?>) obj).getValueSerializer()));
        }
    
        @Override
        public int hashCode() {
            return keySerializer.hashCode() * 31 + valueSerializer.hashCode();
        }
    
        // --------------------------------------------------------------------------------------------
        // Serializer configuration snapshotting
        // --------------------------------------------------------------------------------------------
    
        @Override
        public TypeSerializerSnapshot<Map<K, V>> snapshotConfiguration() {
            return new MapSerializerSnapshot<>(this);
        }
    }
    

    总结:

    • 序列化和反序列化本质上都是对MemorySegment的操作,通过DataOutputView写出二进制数据,通过DataInputView读入二进制数据;
    • 对于复合数据类型,也应嵌套定义并调用内部元素类型的TypeSerializer
    • 必须要有对应的TypeSerializerSnapshot。该组件定义了TypeSerializer本身及其所包含的元数据(即state schema)的序列化方式,这些信息会存储在快照中。可见,通过TypeSerializerSnapshot可以判断状态恢复时数据的兼容性,是Flink实现state schema evolution特性的关键所在。

    TypeSerializerSnapshot

    TypeSerializerSnapshot接口有以下几个重要的方法。注释写得很清晰,不再废话了(实际是因为懒而且累 = =

        /**
         * Returns the version of the current snapshot's written binary format.
         *
         * @return the version of the current snapshot's written binary format.
         */
        int getCurrentVersion();
    
        /**
         * Writes the serializer snapshot to the provided {@link DataOutputView}. The current version of
         * the written serializer snapshot's binary format is specified by the {@link
         * #getCurrentVersion()} method.
         *
         * @param out the {@link DataOutputView} to write the snapshot to.
         * @throws IOException Thrown if the snapshot data could not be written.
         * @see #writeVersionedSnapshot(DataOutputView, TypeSerializerSnapshot)
         */
        void writeSnapshot(DataOutputView out) throws IOException;
    
        /**
         * Reads the serializer snapshot from the provided {@link DataInputView}. The version of the
         * binary format that the serializer snapshot was written with is provided. This version can be
         * used to determine how the serializer snapshot should be read.
         *
         * @param readVersion version of the serializer snapshot's written binary format
         * @param in the {@link DataInputView} to read the snapshot from.
         * @param userCodeClassLoader the user code classloader
         * @throws IOException Thrown if the snapshot data could be read or parsed.
         * @see #readVersionedSnapshot(DataInputView, ClassLoader)
         */
        void readSnapshot(int readVersion, DataInputView in, ClassLoader userCodeClassLoader)
                throws IOException;
    
        /**
         * Recreates a serializer instance from this snapshot. The returned serializer can be safely
         * used to read data written by the prior serializer (i.e., the serializer that created this
         * snapshot).
         *
         * @return a serializer instance restored from this serializer snapshot.
         */
        TypeSerializer<T> restoreSerializer();
    
        /**
         * Checks a new serializer's compatibility to read data written by the prior serializer.
         *
         * <p>When a checkpoint/savepoint is restored, this method checks whether the serialization
         * format of the data in the checkpoint/savepoint is compatible for the format of the serializer
         * used by the program that restores the checkpoint/savepoint. The outcome can be that the
         * serialization format is compatible, that the program's serializer needs to reconfigure itself
         * (meaning to incorporate some information from the TypeSerializerSnapshot to be compatible),
         * that the format is outright incompatible, or that a migration needed. In the latter case, the
         * TypeSerializerSnapshot produces a serializer to deserialize the data, and the restoring
         * program's serializer re-serializes the data, thus converting the format during the restore
         * operation.
         *
         * @param newSerializer the new serializer to check.
         * @return the serializer compatibility result.
         */
        TypeSerializerSchemaCompatibility<T> resolveSchemaCompatibility(
                TypeSerializer<T> newSerializer);
    

    特别注意,在状态恢复时,state schema的兼容性判断结果TypeSerializerSchemaCompatibility有4种:

    • COMPATIBLE_AS_IS:兼容,可以直接使用新Serializer;
    • COMPATIBLE_AFTER_MIGRATION:兼容,但需要用快照中的旧Serializer反序列化一遍数据,再将数据用新Serializer重新序列化。最常见的场景如状态POJO中增加或删除字段,详情可以参考PojoSerializerSnapshot类的相关代码;
    • COMPATIBLE_WITH_RECONFIGURED_SERIALIZER:兼容,但需要将新Serializer重新配置之后再使用。此类场景不太常见,举例如状态POJO的类继承关系发生变化;
    • INCOMPATIBLE:不兼容,无法恢复。例如,更改POJO中的一个简单类型字段的type(e.g. String → Integer),由于负责处理简单数据类型的SimpleTypeSerializerSnapshot不支持此类更改,就会抛出异常:
        @Override
        public TypeSerializerSchemaCompatibility<T> resolveSchemaCompatibility(
                TypeSerializer<T> newSerializer) {
    
            return newSerializer.getClass() == serializerSupplier.get().getClass()
                    ? TypeSerializerSchemaCompatibility.compatibleAsIs()
                    : TypeSerializerSchemaCompatibility.incompatible();
        }
    

    显然,对于复合类型(如List、Map),需要先判断外部容器Serializer的兼容性,再判断嵌套Serializer的兼容性。详情可以参考Flink内部专门为此定义的CompositeTypeSerializerSnapshot抽象类,该类比较复杂,在此按下不表。

    The End

    在一些特殊的场景下,我们需要自定义Serializers来实现更好的状态序列化(例如用RoaringBitmap代替Set在状态中进行高效的去重),今天时间已经很晚,暂时不给出具体实现了。关于自定义状态序列化器的更多细节,请看官参见官方文档<<Custom Serialization for Managed State>>一章。

    晚安晚安。

    相关文章

      网友评论

          本文标题:从一例状态引发的性能问题谈Flink状态序列化

          本文链接:https://www.haomeiwen.com/subject/lebwzrtx.html