Flink cdc2.0

作者: wudl | 来源:发表于2021-10-02 20:48 被阅读0次

    1.Flink cdc 概念

        CDC 的全称是 Change Data Capture ,在广义的概念上,只要能捕获数据变更的技术,我们都可以称为 CDC 。通常我们说的 CDC 技术主要面向
    数据库的变更,是一种用于捕获数据库中数据变更的技术。
    

    2.应用场景

    1.  数据同步,用于备份,容灾
    2.  数据分发,一个数据源分发给多个下游
    3.  数据采集(E),面向数据仓库/数据湖的 ETL 数据集成
    

    3.cdc 技术

    目前业界主流的实现机制的可以分为两种:

    1.基于查询的 CDC
                   a.离线调度查询作业,批处理。
                   b.无法保障数据一致性。
                   c.不保障实时性。
    2.基于日志的 CDC
                  a.实时消费日志,流处理。
                  b.保障数据一致性。
                  c.提供实时数据。
    

    4.常见的开源cdc 方案

    在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
    image
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    Flink CDC 2.0 设计详解

    在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
    在这里插入图片描述

    5. source 官网

    https://github.com/ververica/flink-cdc-connectors

    6. 支持的连接

    Flink cdc 2.0.2 支持oracle

    Database Version
    MySQL Database: 5.7, 8.0.x JDBC Driver: 8.0.16
    PostgreSQL Database: 9.6, 10, 11, 12 JDBC Driver: 42.2.12
    MongoDB Database: 4.0, 4.2, 5.0MongoDB Driver: 4.3.1
    Oracle Database: 11, 12, 19 Oracle Driver: 19.3.0.0

    7.pom 文件

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <parent>
            <artifactId>Flink-learning</artifactId>
            <groupId>com.wudl.flink</groupId>
            <version>1.0-SNAPSHOT</version>
        </parent>
        <modelVersion>4.0.0</modelVersion>
    
        <artifactId>Flink-cdc2.0</artifactId>
        <properties>
            <flink-version>1.13.0</flink-version>
                <maven.compiler.source>1.8</maven.compiler.source>
                <maven.compiler.target>1.8</maven.compiler.target>
        </properties>
    
    
    
        <dependencies>
            <dependency>
                <groupId>org.projectlombok</groupId>
                <artifactId>lombok</artifactId>
                <version>1.18.2</version>
                <scope>provided</scope>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-java</artifactId>
                <version>${flink-version}</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-streaming-java_2.12</artifactId>
                <version>${flink-version}</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-clients_2.12</artifactId>
                <version>${flink-version}</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>3.1.3</version>
            </dependency>
    
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.49</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-table-planner-blink_2.12</artifactId>
                <version>${flink-version}</version>
            </dependency>
    
            <dependency>
                <groupId>com.ververica</groupId>
                <artifactId>flink-connector-mysql-cdc</artifactId>
                <version>2.0.2</version>
            </dependency>
    
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>1.2.75</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-jdbc_2.12</artifactId>
                <version>1.13.3</version>
            </dependency>
        </dependencies>
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-assembly-plugin</artifactId>
                    <version>3.0.0</version>
                    <configuration>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependencies</descriptorRef>
                        </descriptorRefs>
                    </configuration>
                    <executions>
                        <execution>
                            <id>make-assembly</id>
                            <phase>package</phase>
                            <goals>
                                <goal>single</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>
            </plugins>
        </build>
    </project>
    

    8. 代码

    package com.wud.cdc2;
    
    import com.ververica.cdc.connectors.mysql.MySqlSource;
    import com.ververica.cdc.connectors.mysql.table.StartupOptions;
    import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
    import com.ververica.cdc.debezium.DebeziumSourceFunction;
    import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
    import org.apache.flink.runtime.state.filesystem.FsStateBackend;
    import org.apache.flink.streaming.api.CheckpointingMode;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.environment.CheckpointConfig;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.streaming.api.environment.StreamPipelineOptions;
    import org.apache.flink.table.api.Table;
    import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
    import org.apache.flink.types.Row;
    
    import static org.apache.flink.table.api.Expressions.$;
    
    /**
     * @ClassName : FlinkCdc
     * @Description :
     * @Author :wudl
     * @Date: 2021-10-02 20:15
     */
    public class FlinkCDC {
        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env);
            env.enableCheckpointing(5000L);
            env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
            // 设置任务关闭时候保留最后一次checkpoint 的数据
            env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
            // 指定ck 的自动重启策略
            env.setStateBackend(new FsStateBackend("hdfs://192.168.1.161:8020/cdc2.0-test/ck"));
            // 设置hdfs 的访问用户名
            System.setProperty("HADOOP_USER_NAME","hdfs");
    
            DebeziumSourceFunction<String> mySqlSource = MySqlSource.<String>builder()
                    .hostname("192.168.1.180")
                    .port(3306)
                    .username("root")
                    .password("123456")
                    .databaseList("test")
                    .tableList("test.Flink_iceberg")
                    .deserializer(new StringDebeziumDeserializationSchema())
                    .startupOptions(StartupOptions.initial())
                    .build();
            DataStreamSource<String> dataStreamSource = env.addSource(mySqlSource);
            dataStreamSource.print();
            env.execute();
    
    
        }
    }
    

    9执行结果

    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585007,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585013}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585015,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585016}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10013,name=flink-mysqA3,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10014,name=flink-mysqA4,age=19,dt=2021-09-28},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585017}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585017,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10011,name=flink-mysql,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10012,name=flink-mysqA,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10013,name=flink-mysqA3,age=19,dt=2021-09-24},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10014,name=flink-mysqA4,age=19,dt=2021-09-28},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=true,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1633178585, file=mysql-bin.000036, pos=765}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=10050,name=flink-cdc-add,age=21,dt=2021-10-2},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1633178585018,snapshot=last,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000036,pos=765,row=0},op=r,ts_ms=1633178585018}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    
    

    10 .集群执行

    10.1执行命令

    [root@basenode flink-1.13.2]# bin/flink run -c com.wud.cdc2.FlinkCDC /opt/datas/Flink-cdc2.0-1.0-SNAPSHOT-jar-with-dependencies.jar
    
    Job has been submitted with JobID 137b680a6bb934e43568f14f6583b62c
    
    

    10.2 手动执行savepoint

    给当前程序创建保存点-savepoint

    [root@basenode flink-1.13.2]# bin/flink savepoint     e8e918c2517a777e817c630cf1d6b932    hdfs://192.168.1.161:8020/cdc-test/savepoint
    Triggering savepoint for job e8e918c2517a777e817c630cf1d6b932.
    Waiting for response...
    Savepoint completed. Path: hdfs://192.168.1.161:8020/cdc-test/savepoint/savepoint-e8e918-9ef094f349be
    You can resume your program from this savepoint with the run command.
    [root@basenode flink-1.13.2]#  
    
    

    10.3 界面停止flink 程序

    然后再mysql 中添加数据

    10.4 启动flink 程序

    执行命令:bin/flink run -s hdfs://192.168.1.161:8020/cdc-test/savepoint/savepoint-e8e918-9ef094f349be -c com.wud.cdc2.FlinkCDC /opt/datas/Flink-cdc2.0-1.0-SNAPSHOT-jar-with-dependencies.jar

    [root@basenode flink-1.13.2]# bin/flink run -s hdfs://192.168.1.161:8020/cdc-test/savepoint/savepoint-e8e918-9ef094f349be -c  com.wud.cdc2.FlinkCDC /opt/datas/Flink-cdc2.0-1.0-SNAPSHOT-jar-with-dependencies.jar
    Job has been submitted with JobID 474a0da99820aa6025203f9806b9fcad
    

    查看日志:


    在这里插入图片描述

    11 .接下来 flink cdc 2.0 的自定义序列号函数

    从上面可以看出flink cdc 的原始结构

     SourceRecord{sourcePartition={server=mysql_binlog_source}, 
     sourceOffset={file=mysql-bin.000063, pos=154}}
     ConnectRecord{topic='mysql_binlog_source.wudl-gmall.user_info', kafkaPartition=null, key=Struct{id=4000}, keySchema=Schema{mysql_binlog_source.wudl_gmall.user_info.Key:STRUCT}, value=Struct{after=Struct{id=4000,login_name=i0v0k9,nick_name=素云,name=康素云,phone_num=13739911376,email=i0v0k9@qq.com,user_level=1,birthday=1969-12-04,gender=F,create_time=2020-12-04 23:28:45},source=Struct{version=1.4.1.Final,connector=mysql,name=mysql_binlog_source,ts_ms=0,snapshot=last,db=wudl-gmall,table=user_info,server_id=0,file=mysql-bin.000063,pos=154,row=0},op=c,ts_ms=1636255826014}, valueSchema=Schema{mysql_binlog_source.wudl_gmall.user_info.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
    

    11.1 自定义序列化

    package com.wud.cdc2;
    
    import com.alibaba.fastjson.JSONObject;
    import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
    import io.debezium.data.Envelope;
    import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
    import org.apache.flink.api.common.typeinfo.TypeInformation;
    import org.apache.flink.util.Collector;
    import org.apache.kafka.connect.data.Field;
    import org.apache.kafka.connect.data.Schema;
    import org.apache.kafka.connect.data.Struct;
    import org.apache.kafka.connect.source.SourceRecord;
    
    import java.util.List;
    
    /**
     * @ClassName : CustomerDeserialization
     * @Description :
     * @Author :wudl
     * @Date: 2021-11-07 15:52
     */
    public class CustomerDeserialization implements DebeziumDeserializationSchema<String> {
        /**
         *
         * SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1636269821, file=mysql-bin.000063, pos=6442}} ConnectRecord{topic='mysql_binlog_source.test.Flink_iceberg', kafkaPartition=null, key=null, keySchema=null, value=Struct{after=Struct{id=102,name=flinksql,age=25,dt=2021-11-08},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1636269821531,snapshot=last,db=test,table=Flink_iceberg,server_id=0,file=mysql-bin.000063,pos=6442,row=0},op=r,ts_ms=1636269821531}, valueSchema=Schema{mysql_binlog_source.test.Flink_iceberg.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
         *
         *
         *
         *
         *
         * @param sourceRecord   返回一行数据
         * @param collector 数据输出
         * @throws Exception
         */
        @Override
        public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {
    
            JSONObject  result = new JSONObject();
            String topic = sourceRecord.topic();
            String[] fields = topic.split("\\.");
            result.put("db",fields[1]) ;
            result.put("tableName",fields[2]);
            // 获取before 数据
            Struct value = (Struct) sourceRecord.value();
            Struct before = value.getStruct("before");
            JSONObject beforeJson = new JSONObject();
            if (before !=null)
            {
                //获取列信息
                Schema schema = before.schema();
                List<Field> fieldList = schema.fields();
                for (Field field:fieldList)
                {
                    beforeJson.put(field.name(),before.get(field));
                }
            }
            result.put("before",beforeJson);
            // 获取after 数据
            Struct after = value.getStruct("after");
            JSONObject afterJson = new JSONObject();
            if (after !=null)
            {
                Schema schema = after.schema();
                List<Field> afterFields = schema.fields();
                for (Field field:afterFields)
                {
                    afterJson.put(field.name(),after.get(field));
                }
            }
            result.put("after", afterJson);
            //获取操作类型
            Envelope.Operation operation = Envelope.operationFor(sourceRecord);
            result.put("op", operation);
            //输出数据
            collector.collect(result.toJSONString());
        }
        @Override
        public TypeInformation<String> getProducedType() {
            return  BasicTypeInfo.STRING_TYPE_INFO;
        }
    }
    
    

    调用flink cdc 的自定义函数

    package com.wud.cdc2;
    
    import com.ververica.cdc.connectors.mysql.MySqlSource;
    import com.ververica.cdc.connectors.mysql.table.StartupOptions;
    import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
    import com.ververica.cdc.debezium.DebeziumSourceFunction;
    import com.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
    import org.apache.flink.runtime.state.filesystem.FsStateBackend;
    import org.apache.flink.streaming.api.CheckpointingMode;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.environment.CheckpointConfig;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.streaming.api.environment.StreamPipelineOptions;
    import org.apache.flink.table.api.Table;
    import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
    import org.apache.flink.types.Row;
    
    import static org.apache.flink.table.api.Expressions.$;
    
    /**
     * @ClassName : FlinkCdc
     * @Description :
     * @Author :wudl
     * @Date: 2021-10-02 20:15
     */
    public class FlinkCDC {
        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
    //        env.enableCheckpointing(5000L);
    //        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
    //        // 设置任务关闭时候保留最后一次checkpoint 的数据
    //        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
    //        // 指定ck 的自动重启策略
    //        env.setStateBackend(new FsStateBackend("hdfs://192.168.1.161:8020/cdc2.0-test/ck"));
    //        // 设置hdfs 的访问用户名
    //        System.setProperty("HADOOP_USER_NAME","hdfs");
    
            DebeziumSourceFunction<String> mySqlSource = MySqlSource.<String>builder()
                    .hostname("192.168.1.180")
                    .port(3306)
                    .username("root")
                    .password("123456")
                    .databaseList("test")
                    .tableList("test.Flink_iceberg")
    //                .deserializer(new StringDebeziumDeserializationSchema())
                    .deserializer(new CustomerDeserialization())
                    .startupOptions(StartupOptions.initial())
                    .build();
            DataStreamSource<String> dataStreamSource = env.addSource(mySqlSource);
            dataStreamSource.print();
            env.execute();
    
    
        }
    }
    
    

    新增一条数据可以看出 控制台输出结果:

    {"op":"UPDATE","before":{"dt":"2021-11-07","name":"spark","id":104,"age":22},"after":{"dt":"2021-11-07","name":"spark02","id":104,"age":22},"db":"test","tableName":"Flink_iceberg"}
    

    12 flinkcdc 2.0 sql 可以做一个etl

    需要注意的是必须要有主键 否则更新数据是新增一列, 加主键后,更新数据 不会增加

    数据库表结构

    CREATE TABLE `Flink_iceberg` (
      `id` bigint(64) DEFAULT NULL,
      `name` varchar(64) DEFAULT NULL,
      `age` int(20) DEFAULT NULL,
      `dt` varchar(64) DEFAULT NULL
    ) ENGINE=InnoDB DEFAULT CHARSET=latin1
    

    实现代码:

    package com.wud.cdc2;
    
    
    
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    
    import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
    
    /**
     * @ClassName : FlinkCdc20MysqlToMysql
     * @Description :
     * @Author :wudl
     * @Date: 2021-11-07 16:58
     */
    
    public class FlinkCdc20MysqlToMysql {
        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
            String sourceSql = "CREATE TABLE IF NOT EXISTS mySqlSource (" +
                    "id BIGINT primary key, " +
                    "name string ," +
                    "age int," +
                    "dt string" +
                    ") with ( " +
                    " 'connector' = 'mysql-cdc', " +
                    " 'scan.startup.mode' = 'latest-offset', " +
                    " 'hostname' = '192.168.1.180', " +
                    " 'port' = '3306', " +
                    " 'username' = 'root', " +
                    " 'password' = '123456', " +
                    " 'database-name' = 'test', " +
                    " 'table-name' = 'Flink_iceberg' " +
                    ")";
    
            String sinkSql = " CREATE TABLE IF NOT EXISTS mySqlSink (" +
                    "id BIGINT primary key , " +
                    "name string ," +
                    "age int," +
                    "dt string" +
                    ") with (" +
                    " 'connector' = 'jdbc'," +
                    " 'url' = 'jdbc:mysql://192.168.1.180:3306/test'," +
                    "'table-name' = 'Flink_iceberg-cdc'," +
                    " 'username' = 'root'," +
                    " 'password' = '123456' " +
                    " )";
            tableEnv.executeSql(sourceSql);
            tableEnv.executeSql(sinkSql);
            tableEnv.executeSql("insert  into  mySqlSink select * from mySqlSource ");
    //        env.execute("FlinkCdc20MysqlToMysql");
        }
    }
    
    

    12.2 新增一条数据 和跟新数据显示

    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysqA","id":10012,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysqA","id":10012,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysql","id":10011,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysql","id":10011,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysqA","id":10012,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysqA3","id":10013,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-28","name":"flink-mysqA4","id":10014,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-09-24","name":"flink-mysql","id":10011,"age":19},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-11-07","name":"flink","id":101,"age":20},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-11-08","name":"flinksql","id":102,"age":25},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-11-09","name":"flink-table","id":103,"age":21},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-11-07","name":"spark","id":104,"age":22},"db":"test","tableName":"Flink_iceberg"}
    {"op":"READ","before":{},"after":{"dt":"2021-11-07","name":"hbase","id":105,"age":25},"db":"test","tableName":"Flink_iceberg"}
    
    
    
    
    {"op":"UPDATE","before":{"dt":"2021-11-07","name":"spark","id":104,"age":22},"after":{"dt":"2021-11-07","name":"spark02","id":104,"age":22},"db":"test","tableName":"Flink_iceberg"}
    {"op":"CREATE","before":{},"after":{"dt":"2021-11-07","name":"flinkcdc","id":106,"age":22},"db":"test","tableName":"Flink_iceberg"}
    

    相关文章

      网友评论

        本文标题:Flink cdc2.0

        本文链接:https://www.haomeiwen.com/subject/lfpmnltx.html