美文网首页
Algorithms ladder I

Algorithms ladder I

作者: aureole420 | 来源:发表于2017-12-26 06:35 被阅读0次

    24 Dec

    Mission:

    • lintcode 13 strStr
    • lintcode 17 Subsets
    • lintcode 18 SubsetsII
    • lintcode 15 Permutation
    • lintcode 16 Permutation II
    • lintcode 594 strStr II: A lintcode-only problem, requires O(m+n) solution for substring index, see cnblog. Also see java solution Or Princeton CS Robin-Karp.

    Codes:

    13 strStr (easy)

    Note: use two layers of iteration, complexity O(mn)

    package algorithm_ladder_I;
    
    public class StrStr {
        
        public int strStr(String source, String target) {
            // corner case;
            if (source == null || target == null) {
                return -1;
            }
            int sl = source.length();
            int tl = target.length();
            if (sl < tl) {
                return -1;
            }
            
            // two layers of iteration.
            int i, j;
            for (i = 0; i <= sl-tl; i++) {
                for (j = 0; j < tl; j++) {
                    char schar = source.charAt(i + j);
                    char tchar = target.charAt(j);
                    if (schar != tchar) break;
                    // else continue;
                }
                if (j == tl) 
                    return i;
            }
            return -1;
        }
        
        public static void main(String[] args) {    
            String source = "abcdabcdefg";
            String target = "bcd";
            
            StrStr ss = new StrStr();
            System.out.println(ss.strStr(source, target)); // expected to be 1
        }
    }
    

    17 Subsets (medium)

    The key of ENUMERATION is to

    • Enumerate all possible values in current dimension
    • then traverse to next dimension

    backtracking template:

    // sorting the possible values!!
    
    int Solution[MAXDIMENSION]
           backtrack(int dimension) { // backtrack the d^th dimension. (the d^th position)
                // prune
                if (solution[] will not be an answer) return;
                
                // check if solution is one of the solution
                if (dimension == MAX_DIMENSION) {
                    check and record solution[];
                    return;
                }
                
                /**
                 * Enumerate all possible values in current dimension
                 * then traverse to next dimension
                 */
                for (x = possible values of current dimension) {
                    solution[dimension] = x; // solution takes x at the dimension^th position.
                    backtrack(dimension+1);
                }
        }
    
    package algorithm_ladder_I;
    
    import java.util.ArrayList;
    import java.util.List;
    
    /**
     * lintcode 17 medium
     * use dfs:
     */
    public class Subsets {
        
        public List<List<Integer>> subsets(int[] nums) {
            
                List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> list = new ArrayList<Integer>();
            
            // CORNER CASE ------------- !!!
                if (nums == null || nums.length == 0) {
                    return result;
                }
            
                backtrack(nums, 0, list, result);
                return result;
        }
        
        // d for dimension/position
        private void backtrack(int[] nums, int d, List<Integer> list, List<List<Integer>> res) {
                res.add(new ArrayList<Integer>(list));
                
                for (int pos = d; pos < nums.length; pos++) { // all possible values: ranging from nums[d] to nums[nums.length-1]
                    list.add(nums[pos]);
                    backtrack(nums, pos+1 ,list, res);
                    list.remove(list.size()-1);
                }
        }
    
        
        public void printList(List<Integer> list) {
                System.out.print("[");
                for (int i : list) {
                    System.out.print(i + " ");
                }
                System.out.print("] \n");
        }
        
        public static void main(String[] args) {
                int[] S = new int[] {1,2,3};
                Subsets ss = new Subsets();
                List<List<Integer>> result = ss.subsets(S);
                for (List<Integer> list : result) {
                    ss.printList(list);
                }
        }   
    }
    

    Subsets II

    Subsets II differs from subsetsI in that

    • there are duplicated elements in nums[]
    • to deal with duplicated elements: for every dimension, only list the FIRST duplicated at elements.
      • e.g. [1,2_1, 2_2] for dimension = 1, visit 2_1 then ignore 2_2 (when consider dimension = 3 you can still visit 2_2);
    package algorithm_ladder_I;
    
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;
    
    /**
     * with duplication
     * When enumeration for possible values, only use duplicate elements once.
     */
    public class SubsetsII {
        public List<List<Integer>> subsetsWithDup(int[] nums) {
                List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> list = new ArrayList<Integer>();
            
            // CORNER CASE ------------- !!!
                if (nums == null || nums.length == 0) {
                    return result;
                }
                
                Arrays.sort(nums);
                
                backtrack(nums, 0, list, result);
                return result;
        }
        
        
        private void backtrack(int[] nums, int d, List<Integer> list, List<List<Integer>> res) {
                res.add(new ArrayList<Integer>(list));
                
                for (int i = d; i < nums.length; i++) { // enumerate all possible values at dimension d
                    if (i-1 >= d) { // the previous one in nums[] may also be enumerated
                        if (nums[i] == nums[i-1]) continue; // current nums[i] will not be repeatedly enumerated.
                    }
                    list.add(nums[i]);
                    backtrack(nums, i+1, list, res);
                    list.remove(list.size()-1);
                }
        }
        
        
        public void printList(List<Integer> list) {
            System.out.print("[");
            for (int i : list) {
                System.out.print(i + " ");
            }
            System.out.print("] \n");
      }
    
        public static void main(String[] args) {
            int[] S = new int[] {1,2,2};
            SubsetsII ss = new SubsetsII();
            List<List<Integer>> result = ss.subsetsWithDup(S);
            for (List<Integer> list : result) {
                ss.printList(list);
            }
      } 
    }
    

    Permutation

    package algorithm_ladder_I;
    
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;
    
    public class Permutations {
        public List<List<Integer>> permute(int[] nums) {
                List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> list = new ArrayList<Integer>();
            
            // CORNER CASE ------------- !!!
            if (nums == null) {
                return result;
            }
            
            Arrays.sort(nums);
            
            backtrack(nums, 0, list, result);
            return result;
        }
        
        // @Param d dimension
        private void backtrack(int[] nums, int d, List<Integer> list, List<List<Integer>> res) {
                if (list.size() == nums.length) {
                    res.add(new ArrayList<Integer>(list));
                    return;
                }
                
                for (int i =  0; i < nums.length; i++) {
                    if (list.contains(nums[i])) continue;
                    list.add(nums[i]);
                    backtrack(nums, i+1, list, res);
                    list.remove(list.size()-1);
                }
        }
        
        public void printList(List<Integer> list) {
            System.out.print("[");
            for (int i : list) {
                System.out.print(i + " ");
            }
            System.out.print("] \n");
        }
    
        public static void main(String[] args) {
            int[] S = new int[] {1,2,3};
            Permutations ss = new Permutations();
            List<List<Integer>> result = ss.permute(S);
            for (List<Integer> list : result) {
                ss.printList(list);
            }
        }
    }
    

    16 Permutation II

    The key is to maintain a PossibleElement Map. e.g. for nums = [1,2,2,3]
    map = {1:1, 2:2, 3:1}
    In backtracking, update map when list.add(elem). i.e.

                  list.add(elem); possibleElem.put(elem, possibleElem.get(elem) - 1);
                   backtrack(nums, list, res);
                   list.remove(list.size()-1); possibleElem.put(elem, possibleElem.get(elem) + 1);
    
    package algorithm_ladder_I;
    
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    
    public class PermutationsII {
        
        private Map<Integer, Integer> possibleElem;
        public List<List<Integer>> permuteUnique(int[] nums) {
                List<List<Integer>> result = new ArrayList<List<Integer>>();
            List<Integer> list = new ArrayList<Integer>();
            
            // CORNER CASE ------------- !!!
            if (nums == null) {
                return result;
            }
            
            Arrays.sort(nums);
            possibleElem = new HashMap<>();
            for (int i : nums) {
                possibleElem.put(i, possibleElem.getOrDefault(i, 0) + 1); 
            }
            
            backtrack(nums, list, result);
            return result;
        }
        
        // @Param d dimension
        private void backtrack(int[] nums, List<Integer> list, List<List<Integer>> res) {
                if (list.size() == nums.length) {
                    res.add(new ArrayList<Integer>(list));
                    return;
                }
                
                for (int elem : possibleElem.keySet()) {
                    if (possibleElem.get(elem) <= 0) continue;
                    list.add(elem); possibleElem.put(elem, possibleElem.get(elem) - 1);
                    backtrack(nums, list, res);
                    list.remove(list.size()-1); possibleElem.put(elem, possibleElem.get(elem) + 1);
                }
        }
        
        public void printList(List<Integer> list) {
            System.out.print("[");
            for (int i : list) {
                System.out.print(i + " ");
            }
            System.out.print("] \n");
        }
        
        public static void main(String[] args) {
            int[] S = new int[] {1,2,2};
            PermutationsII ss = new PermutationsII();
            List<List<Integer>> result = ss.permuteUnique(S);
            for (List<Integer> list : result) {
                ss.printList(list);
            }
        }
    }
    

    594 strStr II

    Robin-Karp Algorithm -- O(m+n) complexity
    Two important properties of modulation

    1. (A+B) % Q = (A % Q + B % Q) % Q
    2. (A * B) % Q = ((A % Q)*B) % Q
      Robin-Karp algorithm can be derived solely based on this two equations.
    package algorithm_ladder_I;
    
    /**
     * The same as LintCode 13 but requires O(m+n) Solution
     * One possible solution is Robin-Karp Algorithm
     * 1) Use HashCode use modulation: HashCode(ABCD) = (A*31^3 + B*31^2 + C*31^1 + D*31^0) % BASE (note base as Q)
     *    property of module: (A+B) % Q =  (A % Q + B % Q) % Q
     *    property of module: (A * B) % Q = ((A % Q)*B) % Q
     *      therefore,
     *      to obtain (A*31^3 + B*31^2 + C*31^1 + D*31^0) % Q  :
     *          1. cal temp = (0*31 + A) % Q 
     *          2. cal temp = (temp*31 + B) % Q
     *          3. cal temp = (temp*31 + C) % Q
     *          4. cal temp = (temp*31 + D) % Q
     * 2) If known (A*31^3 + B*31^2 + C*31^1 + D*31^0) % Q 
     *    how to obtain (B*31^3 + C*31^2 + D*31^1 + E*31^0) % Q
     *      let x = A*31^3 + B*31^2 + C*31^1 + D*31^0
     *      let x' = B*31^3 + C*31^2 + D*31^1 + E*31^0
     *      x' = x*31 + E - A*31^4
     *      x' % Q = [(x - A*31^3) * 31 + E] % Q
     *             = [x % Q + A * (Q - 31^3 % Q) + E] % Q
     *     if (31^3 % Q) = RM is calculated beforehand then
     *      x' % Q = [x % Q + A * (Q - RM) + E] % Q
     *      
     */
    public class StrStrII {
        
        
        public int strStr(String haystack, String needle) {
            // corner case:
            if (haystack == null || needle == null) {
                return -1;
            }
            if (needle.length() == 0) {
                return 0;
            }
            
            int Q = 100000;
            int M = needle.length();
            int N = haystack.length();
            
            if (M > N) {
                return -1;
            }
            
            // compute RM
            int RM = 1;
            for (int i = 1; i <= M-1; i++) {
                RM = (RM * 31) % Q;
            }
            
            int hashPattern = getHashCode(needle, Q);
            System.out.println("hashPattern: " + hashPattern);
    
            
            int hashCompare = getHashCode(haystack.substring(0, M), Q);
            for (int i = 0; i <= N-M; i++) {
                if (i != 0) { // update hashcode
                    int originalInit = Character.getNumericValue(haystack.charAt(i-1)); 
                    int newEnd = Character.getNumericValue(haystack.charAt(i+M-1));
                    hashCompare = (31 * (hashCompare + originalInit * (Q - RM % Q)) + newEnd) % Q;
                }   
                System.out.println("hashCompare: " + hashCompare);
                if (hashCompare == hashPattern) {
                    return i;
                } // else continue;
            }
            
            return -1;
        }
        
        private int getHashCode(String s, int Q) {
            char[] chars = s.toCharArray();
            int r = 0; 
            for (char c : chars) {
                r = (r*31 + Character.getNumericValue(c)) % Q;
            }
            return r;
        }
        
        public static void main(String[] args) {
            String haystack = "abcd";
            String needle = "bcd";
            StrStrII ss = new StrStrII();
            System.out.println(ss.strStr(haystack, needle)); // should be 1
        }   
    }
    

    相关文章

      网友评论

          本文标题:Algorithms ladder I

          本文链接:https://www.haomeiwen.com/subject/lhrlgxtx.html