美文网首页
Bounding Box Regression with Unc

Bounding Box Regression with Unc

作者: Cat丹 | 来源:发表于2020-04-29 15:06 被阅读0次

    概述:

    CVPR2019 paper,主要解决物体标注时标注框模糊带来的问题,在训练时考虑到这种标注偏差,不去过分拟合标注位置(相当于一种hard样本处理方式)。paper提出一个KL Loss,来学习这种偏差,并在nms阶段使用学习到的偏差,以得到更合适的物体框。

    On MS-COCO, we boost the Average Preci- sion (AP) of VGG-16 Faster R-CNN from 23.6% to 29.1%. More importantly, for ResNet-50-FPN Mask R-CNN, our method improves the AP and AP90 by 1.8% and 6.2% re- spectively, which significantly outperforms previous state- of-the-art bounding box refinement methods.

    paper
    github
    解读

    直接拿来用系列

    reg.png network.png

    相关文章

      网友评论

          本文标题:Bounding Box Regression with Unc

          本文链接:https://www.haomeiwen.com/subject/ljagwhtx.html