美文网首页
demo2:用一个隐藏层进行平面数据分类

demo2:用一个隐藏层进行平面数据分类

作者: yumiii_ | 来源:发表于2018-11-22 16:54 被阅读0次

    基本上本文的代码全部来自github:浅层神经网络,由于吴恩达课程作业的代码依赖于各种包,而我没有注册coursera,所以用的数据集是sklearn的月牙数据。思路是一样的,通过调试这个代码,我学到的东西大概是神经网络中的维度真的很重要啊。。W维度的设置方法就看个人习惯,然后才影响了网络中是对W转置还是对X转置,一定要搞清楚。

    数据集 sklearn 月牙数据集

    def plot_decision_boundary(pred_func, X, y):
        # Set min and max values and give it some padding
        x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
        y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(X[:, 0], X[:, 1], c=np.squeeze(y), cmap=plt.cm.Spectral)
        plt.title("Logistic Regression")
        plt.show()
    def sigmoid(x):
        return 1 / (1 + np.exp(-x))
    

    看一下数据集的样子:

    np.random.seed(0)
    X, y = make_moons(200, noise=0.20)
    y = y.reshape((200,1))
    # print(y)       #可以看到y的取值只有0,1两种
    print(X.shape)     #[200,2]
    print(y.shape)      #[200,1]
    plt.scatter(X[:,0], X[:,1], s=40, c=y.ravel(), cmap=plt.cm.Spectral)
    plt.show()
    
    image.png

    尝试一下logistic regression

    clf = sklearn.linear_model.LogisticRegressionCV()
    clf.fit(X,y)
    
    plot_decision_boundary(lambda x: clf.predict(x), X, y)
    plt.title("Logistic Regression")
    LR_predictions = clf.predict(X)
    
    #由于数据集中y的取值只有0和1两种,所以下面的np.dot()第一项计算的是预测为1标签为1的数量,np.dot()第二项计算的是预测为0标签为0的数量,加起来就是预测正确的总次数
    print ('Accuracy of logistic regression: %d '%float((np.dot(y.T,LR_predictions.T) + np.dot(1-y.T,1-LR_predictions.T))/float(y.size)*100)+'% ' + "(percentage of correctly labelled datapoints)")
    

    划分数据的结果如下:令人震惊的是这样准确率竟然能有85%,可是很明显这个数据不是线性可分的。


    logistic regression

    接下来交给神经网络

    1.预置知识:
    由吴恩达的深度学习的课,我们知道,W1的维度设置为(本层神经元的数量,特征维度),b1的维度设为(本层神经元的数量,1)

    2.tips:
    初始化W的时候用np.random.rand(),再乘以一个很小的数,生成一个比较小的高斯分布的随机数。
    编码中嵌入assert代码,检测维度。
    使用cache来保存每一次隐藏层计算后的输出值。

    2.构建神经网络的一般方法是:
    ①定义网络结构(输入层,隐藏层单元数等)
    ②初始化模型的参数
    ③循环:前向传播,计算损失,反向求导,更新参数

    ①定义网络结构:

    def layer_sizes(X, Y):
        """
        Arguments:
        X -- input dataset of shape (input size, number of examples)
        Y -- labels of shape (output size, number of examples)
    
        Returns:
        n_x -- the size of the input layer
        n_h -- the size of the hidden layer
        n_y -- the size of the output layer
        """
        n_x = X.shape[0]  # size of input layer
        #我们这里把隐藏层的单元数设置为4
        n_h = 4
        n_y = Y.shape[0]  # size of output layer
    
        return (n_x, n_h, n_y)
    

    ②初始化参数

    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
    
        Returns:
        params -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
    
        np.random.seed(2)  # 尽管初始化是随机的,但是我们建立了一个种子,以便您的输出与我们的匹配
    
        W1 = np.random.randn(n_h, n_x) * 0.01
        # print(W1.shape)[4,2]
        b1 = np.zeros((n_h, 1))
        # print(b1.shape)[4,1]
        W2 = np.random.randn(n_y, n_h) * 0.01
        # print(W2.shape)[1,4]
        b2 = np.zeros((n_y, 1))
        # print(b2.shape)[1,1]
    
        # 深度学习常见的bug就是维度异常
        # 吴恩达的经验:编码中嵌入assert代码,检测维度
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters
    
    

    ③前向传播

    def forward_propagation(X, parameters):
        """
            Argument:
            X -- input data of size (n_x, m)
            parameters -- python dictionary containing your parameters (output of initialization function)
    
            Returns:
            A2 -- The sigmoid output of the second activation
            cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
            """
        # Retrieve each parameter from the dictionary "parameters"
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
    
    
        # Implement Forward Propagation to calculate A2 (probabilities)
        Z1 = np.dot(W1, X) + b1
        A1 = np.tanh(Z1)
        Z2 = np.dot(W2, A1) + b2
        A2 = sigmoid(Z2)
    
        assert (A2.shape == (1, X.shape[1]))
    
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
    
        return A2, cache
    
    

    反向传播:

    def backward_propagation(parameters, cache, X, Y):
        """
        Implement the backward propagation using the instructions above.
    
        Arguments:
        parameters -- python dictionary containing our parameters
        cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
        X -- input data of shape (2, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
    
        Returns:
        grads -- python dictionary containing your gradients with respect to different parameters
        """
        m = X.shape[1]
    
        # First, retrieve W1 and W2 from the dictionary "parameters".
        W1 = parameters['W1']
        W2 = parameters['W2']
    
    
        # Retrieve also A1 and A2 from dictionary "cache".
    
        A1 = cache['A1']
        A2 = cache['A2']
    
    
        # Backward propagation: calculate dW1, db1, dW2, db2.
    
        dZ2 = A2 - Y
        dW2 = 1 / m * np.dot(dZ2, A1.T)
        db2 = 1 / m * np.sum(dZ2, axis=1, keepdims=True)
        dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
        dW1 = 1 / m * np.dot(dZ1, X.T)
        db1 = 1 / m * np.sum(dZ1, axis=1, keepdims=True)
    
    
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
    
        return grads
    
    

    计算损失

    def compute_cost(A2, Y, parameters):
        """
        Computes the cross-entropy cost given in equation (13)
    
        Arguments:
        A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
        Y -- "true" labels vector of shape (1, number of examples)
        parameters -- python dictionary containing your parameters W1, b1, W2 and b2
    
        Returns:
        cost -- cross-entropy cost given equation (13)
        """
    
        m = Y.shape[1]  # number of example
    
        # Compute the cross-entropy cost
        logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), (np.log(1 - A2)))
        cost = -1 / m * np.sum(logprobs)
    
        cost = np.squeeze(cost)  # makes sure cost is the dimension we expect.
        # E.g., turns [[17]] into 17
        assert (isinstance(cost, float))
    
        return cost
    
    

    更新参数

    def update_parameters(parameters, grads, learning_rate=1.2):
        """
        Updates parameters using the gradient descent update rule given above
    
        Arguments:
        parameters -- python dictionary containing your parameters
        grads -- python dictionary containing your gradients
    
        Returns:
        parameters -- python dictionary containing your updated parameters
        """
        # Retrieve each parameter from the dictionary "parameters"
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
    
        # Retrieve each gradient from the dictionary "grads"
        dW1 = grads["dW1"]
        db1 = grads["db1"]
        dW2 = grads["dW2"]
        db2 = grads["db2"]
    
        # Update rule for each parameter
        W1 -= learning_rate * dW1
        b1 -= learning_rate * db1
        W2 -= learning_rate * dW2
        b2 -= learning_rate * db2
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters
    
    

    接下来把这个网络组合起来:

    def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False):
        """
        Arguments:
        X -- dataset of shape (2, number of examples)
        Y -- labels of shape (1, number of examples)
        n_h -- size of the hidden layer
        num_iterations -- Number of iterations in gradient descent loop
        print_cost -- if True, print the cost every 1000 iterations
    
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
    
        np.random.seed(3)
        n_x = layer_sizes(X, Y)[0]
        n_y = layer_sizes(X, Y)[2]
    
        # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
        n_x, n_h, n_y = layer_sizes(X, Y)
        parameters = initialize_parameters(n_x, n_h, n_y)
        W1 = parameters['W1']
        b1 = parameters['b1']
        W2 = parameters['W2']
        b2 = parameters['b2']
    
    
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
    
    
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X, parameters)
    
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2, Y, parameters)
    
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
    
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads)
    
    
    
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print("Cost after iteration %i: %f" % (i, cost))
    
        return parameters
    

    预测:

    def predict(parameters, X):
        """
        Using the learned parameters, predicts a class for each example in X
    
        Arguments:
        parameters -- python dictionary containing your parameters
        X -- input data of size (n_x, m)
    
        Returns
        predictions -- vector of predictions of our model (red: 0 / blue: 1)
        """
    
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
        A2, cache = forward_propagation(X, parameters)
        predictions = np.array([1 if x > 0.5 else 0 for x in A2.reshape(-1, 1)]).reshape(A2.shape)  # 这一行代码的作用详见下面代码示例
    
    
        return predictions
    # Build a model with a n_h-dimensional hidden layer
    parameters = nn_model(X.T, y.T, n_h = 4, num_iterations = 10000, print_cost=True)
    

    最后画出训练的神经网络的分类结果:

    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, y)
    plt.title("Decision Boundary for hidden layer size " + str(4))
    predictions = predict(parameters, X.T)
    print ('Accuracy: %d' % float((np.dot(y.T,predictions.T) + np.dot(1-y.T,1-predictions.T))/float(y.size)*100) + '%')
    

    此时的准确率为99%。


    image.png

    相关文章

      网友评论

          本文标题:demo2:用一个隐藏层进行平面数据分类

          本文链接:https://www.haomeiwen.com/subject/lmilqqtx.html