有一句话是,千万人撩你,不如一人懂你,这句话在互联网圈可以说成是——真正地了解用户,才能得到用户。用户画像的重要性不言而喻。
用户画像产生背景
在互联网逐渐步入大数据时代后,不可避免的给企业及用户的行为带来一系列改变与重塑。最大的变化,用户的所有行为在企业面前几乎都是可视的。随着大数据技术的深入研究与应用,企业的专注点日益聚焦于怎样利用大数据来为精准营销服务,进而深入挖掘潜在的商业价值。于是,“用户画像”的概念也就应运而生。
什么是用户画像
简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。比如这样:
用户画像不等于用户标签
画虎不全反类汪,想要用好它,首先得深入理解用户画像。
用户画像不等于用户标签,用户标签比如新用户、活跃用户、流失用户等,但这些标签真的是好标签吗?答案是否定的,比如流失用户,这些是滞后的,那么此时设立预防性的减少用户流失概率比用户流失标签更重要,所以用户画像得是商业目标下的用户标签集合,而不是所有的用户标签都叫做用户画像
用户标签获得的两种形式
第一种通过已有数据或者一定规则加工比如流失标签。第二种基于已有数据计算概率模型,通过机器学习或者数据挖掘得到更有价值的数据标签,比如用户流失概率。
如何建立正确的用户画像
用户画像首先是基于业务模型的,为了便于理解给大家讲一个老王的故事。
老王是一家互联网创业公司的核心人员,产品主营绿色健康沙拉,老王和绿色比较搭嘛。这家公司推出了APP专卖各式各样的沙拉,现在需要建立用户画像指导运营。下图是老王简单梳理的运营流程。
老王将顾客按是否购买过沙拉,划分成潜在用户和新客。潜在用户是注册过APP但还没有下单,新客是只购买过一次沙拉的用户,除此以外还有老客,即消费了两次及以上的人群。
为什么独立出新客标签?因为老王的沙拉针对未消费用户会有新人红包引导消费,万事开头难。这也带来新客一次后不再消费的问题,所以需要潜在、新客、老客的划分。
作为一个有追求的运营人员,划分老客也是不够,这里继续用户分层。
老王现在计算不同消费档次的用户留存度差异,譬如某时间段内消费达XX元的用户,在未来时间段是否依旧消费。
老王考虑消费分布定义,30天内消费200元以上为VIP用户。老王的生意如果特别好,也可以继续划分超级VIP。这种标签往往配合业务,譬如VIP有赠送饮料,优先配送的权益。非VIP人群,也需要激励往VIP发展。
老王针对不同属性的人群,采取了特殊的运营策略。像学生群体,因为7,8月份是暑假,所以老王提前预估到校园地区的销售额下降。当9月开学季,又能对返校学生进行召回。白领相关的群体,更关注消费体验,对价格敏感是次要的。如果平台女用户的消费占比高,老王就主打减肥功能的沙拉,并且以包月套餐的形式提高销量。
以一家沙拉店来看,老王的用户画像已经不错了,但他还是焦头烂额,因为用户流失率开始上升。用户流失有各种各样的原因:对手老李沙拉的竞争、沙拉的口味、用户觉得性价比不高、老王不够帅等。
流失是一个老大难的预测问题。老王对流失用户的定义是30天没有消费。想要准确预测,这里得尝试用机器学习建模,技术方面先这里略过。
用户历史窗口内消费金额少,有可能流失;用户历史窗口内消费频次低,有可能流失;用户历史窗口内打开APP次数少,有可能流失;用户给过差评,有可能流失;用户等餐时间长,有可能流失;用户的性别差异,有可能流失;餐饮的季度因素,有可能流失…
老王依据业务,挑选了可能影响业务的特征,提交给数据组尝试预测流失。需要注意的是,这些用户行为不能反应真实的情况。大家不妨想一下,流失用户的行为,是不是一个动态的变化过程?
我曾经消费过很多次,但是突然吃腻了,于是减少消费次数,再之后不怎么消费,最终流失。单位时间段内的消费忠诚度是梯度下降的,为了更好的描述变化过程,将时间窗口细分成多个等距段。前30~20天、前20~10天、前10天内,这种切分比前30天内可以更好地表达下降趋势,也更好的预测流失。
从老王的思路看,所谓流失,可以通过用户行为的细节预判。机器学习的建模虽然依赖统计手段,也离不开业务洞察。这里再次证明,用户画像建立在业务模型上。
流失概率解决了老王的心头之患,通过提前发现降低流失用户。挽回流失推行一段时间后,老王发现虽然流失用户减少了,但是成本提高了,因为挽回用户也是要花钱的呀。亏本可不行,老王心头又生一计,他只挽回有价值的,那种拿了红包才消费的用户老王他不要了!老王要的是真爱粉。于是他配合消费档次区别对待,虽然流失用户的数量没有控制好,但是利润提高了。
网友评论