Python 是一门 面向对象 语言,实现了一个完整的面向对象体系,简洁而优雅。
与其他面向对象编程语言相比, Python 有自己独特的一面。 这让很多开发人员在学习 Python 时,多少有些无所适从。 那么,Python 对象模型都有哪些特色呢?
一切皆对象
首先,在 Python 世界, 基本类型也是对象 ,与通常意义的“对象”形成一个有机统一。 换句话讲, Python 不再区别对待基本类型和对象,所有基本类型内部均由对象实现。 一个整数是一个对象,一个字符串也是一个对象:
>>> a =1>>> b ='abc'
其次, Python 中的 类型也是一种对象 ,称为 类型对象 。 整数类型是一个对象,字符串类型是一个对象,程序中通过 class 关键字定义的类也是一个对象。
举个例子,整数类型在 Python 内部是一个对象,称为 类型对象 :
>>> int
通过整数类型 实例化 可以得到一个整数对象,称为 实例对象 :
>>> int('1024')1024
面向对象理论中的“ 类 ”和“ 对象 ”这两个基本概念,在 Python 内部都是通过对象实现的,这是 Python 最大的特点。
类型、对象体系
a 是一个整数对象( 实例对象 ),其类型是整数类型( 类型对象 ):
>>> a =1>>> type(a)>>> isinstance(a, int)True
那么整数类型的类型又是什么呢?
>>> type(int)
可以看到,整数类型的类型还是一种类型,即 类型的类型 。 只是这个类型比较特殊,它的实例对象还是类型对象。
Python 中还有一个特殊类型 object ,所有其他类型均继承于 object ,换句话讲 object 是所有类型的基类:
>>> issubclass(int,object)True
综合以上关系,得到以下关系图:
内置类型已经搞清楚了,自定义类型及对象关系又如何呢?定义一个简单的类来实验:
classDog(object):defyelp(self):print('woof')
创建一个 Dog 实例,毫无疑问,其类型是 Dog :
>>> dog = Dog()>>> dog.yelp()woof>>> type(dog)
Dog 类的类型自然也是 type ,其基类是 object (就算不显式继承也是如此):
>>> type(Dog)>>> issubclass(Dog, object)True
自定义子类及实例对象在图中又处于什么位置?定义一个猎犬类进行实验:
classSleuth(Dog):defhunt(self):pass
可以看到, 猎犬对象( sleuth )是猎犬类( Sleuth )的实例, Sleuth 的类型同样是 type :
>>> sleuth = Sleuth()>>> sleuth.hunt()>>> type(sleuth)>>> type(Sleuth)
同时, Sleuth 类继承自 Dog 类,是 Dog 的子类,当然也是 object 的子类:
>>> issubclass(Sleuth, Dog)True>>> issubclass(Sleuth, object)True
现在不可避免需要讨论 type 以及 object 这两个特殊的类型。
理论上, object 是所有类型的 基类 ,本质上是一种类型,因此其类型必然是 type 。 而 type 是所有类型的类型,本质上也是一种类型,因此其类型必须是它自己!
>>> type(object)>>> type(object) is typeTrue>>> type(type)>>> type(type) is typeTrue
另外,由于 object 是所有类型的 基类 ,理论上也是 type 的基类( __base__ 属性):
>>> issubclass(type, object)True>>> type.__base__
但是 object 自身便不能有基类了。为什么呢? 对于存在继承关系的类,成员属性和成员方法查找需要回溯继承链,不断查找基类。 因此,继承链必须有一个终点,不然就死循环了。
这就完整了!
可以看到,所有类型的基类收敛于 object ,所有类型的类型都是 type ,包括它自己! 这就是 Python 类型、对象体系全图,设计简洁、优雅、严谨。
该图将成为后续阅读源码、探索 Python 对象模型的有力工具,像地图一样指明方向。 图中所有实体在 Python 内部均以对象形式存在,至于对象到底长啥样,相互关系如何描述,这些问题先按下不表,后续一起到源码中探寻答案。
变量只是名字
先看一个例子,定义一个变量 a ,并通过 id 内建函数取出其“地址”:
>>> a =1>>> id(a)4302704784
定义另一个变量 b ,以 a 赋值,并取出 b 的“地址”:
>>> b = a>>> id(b)4302704784
惊奇地看到, a 和 b 这两个变量的地址居然是相同的!这不合常理呀!
对于大多数语言( C 语言为例),定义变量 a 即为其分配内存并存储变量值:
变量 b 内存空间与 a 独立,赋值时进行拷贝:
在 Python 中,一切皆对象,整数也是如此, 变量只是一个与对象关联的名字 :
而变量赋值,只是将当前对象与另一个名字进行关联,背后的对象是同一个:
因此,在 Python 内部,变量只是一个名字,保存指向实际对象的指针,进而与其绑定。 变量赋值只拷贝指针,并不拷贝指针背后的对象。
可变对象 与 不可变对象
定义一个整数变量:
>>> a =1>>> id(a)4302704784
然后,对其自增 1 :
>>> a +=1>>> a2>>> id(a)4302704816
数值符合预期,但是对象变了!初学者一脸懵逼,这是什么鬼?
一切要从 可变对象 和 不可变对象 说起。 可变对象 在对象创建后,其值可以进行修改; 而 不可变对象 在对象创建后的整个生命周期,其值都不可修改。
在 Python 中,整数类型是不可变类型, 整数对象是不可变对象。 修改整数对象时, Python 将以新数值创建一个新对象,变量名与新对象进行绑定; 旧对象如无其他引用,将被释放。
每次修改整数对象都要创建新对象、回收旧对象,效率不是很低吗? 确实是。 后续章节将从源码角度来解答: Python 如何通过 小整数池 等手段进行优化。
可变对象是指创建后可以修改的对象,典型的例子是 列表 ( list ):
>>> l = [1,2]>>> l[1,2]>>> id(l)4385900424
往列表里头追加数据,发现列表对象还是原来那个,只不过多了一个元素了:
>>> l.append(3)>>> l[1,2,3]>>> id(l)4385900424
实际上,列表对象内部维护了一个 动态数组 ,存储元素对象的指针:
列表对象增减元素,需要修改该数组。例如,追加元素 3 :
定长对象 与 变长对象
Python 一个对象多大呢?相同类型对象大小是否相同呢? 想回答类似的问题,需要考察影响对象大小的因素。
标准库 sys 模块提供了一个查看对象大小的函数 getsizeof :
>>> import sys>>> sys.getsizeof(1)28
先观察整数对象:
>>> sys.getsizeof(1)28>>> sys.getsizeof(100000000000000000)32>>> sys.getsizeof(100000000000000000000000000000000000000000000)44
可见整数对象的大小跟其数值有关,像这样 大小不固定 的对象称为 变长对象 。
我们知道,位数固定的整数能够表示的数值范围是有限的,可能导致 溢出 。 Python 为解决这个问题,采用类似 C++ 中 大整数类 的思路实现整数对象 —— 串联多个普通 32 位整数,以便支持更大的数值范围。 至于需要多少个 32 位整数,则视具体数值而定,数值不大的一个足矣,避免浪费。
这样一来,整数对象需要在头部额外存储一些信息,记录对象用了多少个 32 位整数。 这就是变长对象典型的结构,先有个大概印象即可,后续讲解整数对象源码时再展开。
接着观察字符串对象:
>>> sys.getsizeof('a')50>>> sys.getsizeof('abc')52
字符串对象也是变长对象,这个行为非常好理解,毕竟字符串长度不尽相同嘛。 此外,注意到字符串对象大小比字符串本身大,因为对象同样需要维护一些额外的信息。 至于具体需要维护哪些信息,同样留到源码剖析环节中详细介绍。
那么,有啥对象是定长的呢?—— 浮点数对象 float :
>>> sys.getsizeof(1.)24>>> sys.getsizeof(1000000000000000000000000000000000.)24
浮点数背后是由一个 double 实现,就算表示很大的数,浮点数对象的大小也不变。
为啥 64 位的 double 可以表示这么大的范围呢?答案是:牺牲了精度。
>>> int(1000000000000000000000000000000000.)999999999999999945575230987042816
由于浮点数存储位数是固定的,它能表示的数值范围也是有限的,超出便会抛锚:
>>>10. **1000Traceback (most recent call last):File"<stdin>", line1,inOverflowError:(34,'Result too large')
本文章素材来源于网络,如有侵权请联系删除。
网友评论