美文网首页
模型容器

模型容器

作者: 真是个点子王 | 来源:发表于2020-04-04 10:11 被阅读0次

    容器(Containter)

    • 在Pytorch中提供的模型容器中,有三个常用的模型容器,nn.Sequential、nn.ModuleList、nn.ModuleDict

    1、nn.Sequential

    • nn.Sequential是nn.Module的容器,用于按顺序包装一组网络层。
    • 例如对LeNet网络的构建:
    class LeNetSequential(nn.Module):
        def __init__(self, classes):
            super(LeNetSequential, self).__init__()
            self.features = nn.Sequential(
                nn.Conv2d(3, 6, 5),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2),
                nn.Conv2d(6, 16, 5),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2, stride=2),)
    
            self.classifier = nn.Sequential(
                nn.Linear(16*5*5, 120),
                nn.ReLU(),
                nn.Linear(120, 84),
                nn.ReLU(),
                nn.Linear(84, classes),)
    
        def forward(self, x):
            x = self.features(x)
            x = x.view(x.size()[0], -1)
            x = self.classifier(x)
            return x
    

    2、nn.ModuleList

    • nn.ModuleList是nn.Module的模块,用于包装一组网络层,以迭代的方式调用网络层
    • 以迭代的方法构建一个深度为20的全连接网络
    class ModuleList(nn.Module):
        def __init__(self):
            super(ModuleList, self).__init__()
            self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])
    
        def forward(self, x):
            for i, linear in enumerate(self.linears):
                x = linear(x)
            return x
    
    

    3、nn.ModuleDict

    • nn.ModuleDict是nn.Module的容器,用于包装一组网络层,以索引的方式调用网络层
    class ModuleDict(nn.Module):
        def __init__(self):
            super(ModuleDict, self).__init__()
            self.choices = nn.ModuleDict({
                'conv': nn.Conv2d(10, 10, 3),
                'pool': nn.MaxPool2d(3)
            })
    
            self.activations = nn.ModuleDict({
                'relu': nn.ReLU(),
                'prelu': nn.PReLU()
            })
    
        def forward(self, x, choice, act):
            x = self.choices[choice](x)
            x = self.activations[act](x)
            return x
    
    
    net = ModuleDict()
    
    fake_img = torch.randn((4, 10, 32, 32))
    
    output = net(fake_img, 'conv', 'relu')
    
    print(output)
    
    
    

    4、容器总结

    5、Alex网络实例

    class AlexNet(nn.Module):
    
        def __init__(self, num_classes=1000):
            super(AlexNet, self).__init__()
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2),
                nn.Conv2d(64, 192, kernel_size=5, padding=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2),
                nn.Conv2d(192, 384, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(384, 256, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, kernel_size=3, padding=1),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2),
            )
            self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
            self.classifier = nn.Sequential(
                nn.Dropout(),
                nn.Linear(256 * 6 * 6, 4096),
                nn.ReLU(inplace=True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(inplace=True),
                nn.Linear(4096, num_classes),
            )
    
        def forward(self, x):
            x = self.features(x)
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.classifier(x)
            return x
    
    

    相关文章

      网友评论

          本文标题:模型容器

          本文链接:https://www.haomeiwen.com/subject/lnrdphtx.html