美文网首页
Tensorflow 学习(4)实现CIFAR_10小数据集分类

Tensorflow 学习(4)实现CIFAR_10小数据集分类

作者: Joyner2018 | 来源:发表于2019-06-07 12:57 被阅读0次

    1.数据集

    CIFAR_10

    192.168.9.5:/DATACENTER1/zhiwen.wang/tensorflow-wzw/tensorflow_learn/CIFAR_10/cifar-10-batches

    2.代码

    192.168.9.5:/DATACENTER1/zhiwen.wang/tensorflow-wzw/tensorflow_learn/CIFAR_10/cifar10

    wzwtrain13.py

    # -*- coding: utf-8 -*-

    """

    Created on 2019

    @author: wzw

    """

    '''

    建立一个带有全局平均池化层的卷积神经网络  并对CIFAR-10数据集进行分类

    1.使用3个卷积层的同卷积操作,滤波器大小为5x5,每个卷积层后面都会跟一个步长为2x2的池化层,滤波器大小为2x2

    2.对输出的10个feature map进行全局平均池化,得到10个特征

    3.对得到的10个特征进行softmax计算,得到分类

    '''

    import cifar10_input

    import tensorflow as tf

    import numpy as np

    '''

    一 引入数据集

    '''

    batch_size = 256

    learning_rate = 1e-4

    training_step = 100000

    display_step = 200

    #数据集目录

    data_dir = './cifar-10-batches/cifar-10-batches-bin'

    print('begin')

    #获取训练集数据

    images_train,labels_train = cifar10_input.inputs(eval_data=False,data_dir = data_dir,batch_size=batch_size)

    print('begin data')

    '''

    二 定义网络结构

    '''

    def weight_variable(shape):

        '''

        初始化权重

        args:

            shape:权重shape

        '''

        initial = tf.truncated_normal(shape=shape,mean=0.0,stddev=0.1)

        return tf.Variable(initial)

    def bias_variable(shape):

        '''

        初始化偏置

        args:

            shape:偏置shape

        '''

        initial =tf.constant(0.1,shape=shape)

        return tf.Variable(initial)

    def conv2d(x,W):

        '''

        卷积运算 ,使用SAME填充方式  池化层后

            out_height = in_hight / strides_height(向上取整)

            out_width = in_width / strides_width(向上取整)

        args:

            x:输入图像 形状为[batch,in_height,in_width,in_channels]

            W:权重 形状为[filter_height,filter_width,in_channels,out_channels]       

        '''

        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

    def max_pool_2x2(x):

        '''

        最大池化层,滤波器大小为2x2,'SAME'填充方式  池化层后

            out_height = in_hight / strides_height(向上取整)

            out_width = in_width / strides_width(向上取整)

        args:

            x:输入图像 形状为[batch,in_height,in_width,in_channels]

        '''

        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

    def avg_pool_6x6(x):

        '''

        全局平均池化层,使用一个与原有输入同样尺寸的filter进行池化,'SAME'填充方式  池化层后

            out_height = in_hight / strides_height(向上取整)

            out_width = in_width / strides_width(向上取整)

        args;

            x:输入图像 形状为[batch,in_height,in_width,in_channels]

        '''

        return tf.nn.avg_pool(x,ksize=[1,6,6,1],strides=[1,6,6,1],padding='SAME')

    def print_op_shape(t):

        '''

        输出一个操作op节点的形状

        '''

        print(t.op.name,'',t.get_shape().as_list())

    #定义占位符

    input_x = tf.placeholder(dtype=tf.float32,shape=[None,24,24,3])  #图像大小24x24x

    input_y = tf.placeholder(dtype=tf.float32,shape=[None,10])        #0-9类别

    x_image = tf.reshape(input_x,[-1,24,24,3])

    #1.卷积层 ->池化层

    W_conv1 = weight_variable([5,5,3,64])

    b_conv1 = bias_variable([64])

    h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)    #输出为[-1,24,24,64]

    print_op_shape(h_conv1)

    h_pool1 = max_pool_2x2(h_conv1)                            #输出为[-1,12,12,64]

    print_op_shape(h_pool1)

    #2.卷积层 ->池化层

    W_conv2 = weight_variable([5,5,64,64])

    b_conv2 = bias_variable([64])

    h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)    #输出为[-1,12,12,64]

    print_op_shape(h_conv2)

    h_pool2 = max_pool_2x2(h_conv2)                            #输出为[-1,6,6,64]

    print_op_shape(h_pool2)

    #3.卷积层 ->全局平均池化层

    W_conv3 = weight_variable([5,5,64,10])

    b_conv3 = bias_variable([10])

    h_conv3 = tf.nn.relu(conv2d(h_pool2,W_conv3) + b_conv3)  #输出为[-1,6,6,10]

    print_op_shape(h_conv3)

    nt_hpool3 = avg_pool_6x6(h_conv3)                        #输出为[-1,1,1,10]

    print_op_shape(nt_hpool3)

    nt_hpool3_flat = tf.reshape(nt_hpool3,[-1,10])           

    y_conv = tf.nn.softmax(nt_hpool3_flat)

    '''

    三 定义求解器

    '''

    #softmax交叉熵代价函数

    cost = tf.reduce_mean(-tf.reduce_sum(input_y * tf.log(y_conv),axis=1))

    #求解器

    train = tf.train.AdamOptimizer(learning_rate).minimize(cost)

    #返回一个准确度的数据

    correct_prediction = tf.equal(tf.arg_max(y_conv,1),tf.arg_max(input_y,1))

    #准确率

    accuracy = tf.reduce_mean(tf.cast(correct_prediction,dtype=tf.float32))

    '''

    四 开始训练

    '''

    sess = tf.Session();

    sess.run(tf.global_variables_initializer())

    tf.train.start_queue_runners(sess=sess)

    for step in range(training_step):

        with tf.device('/cpu:0'):

            image_batch,label_batch = sess.run([images_train,labels_train])

            label_b = np.eye(10,dtype=np.float32)[label_batch]

        with tf.device('/gpu:0'):

            train.run(feed_dict={input_x:image_batch,input_y:label_b},session=sess)

        if step % display_step == 0:

            train_accuracy = accuracy.eval(feed_dict={input_x:image_batch,input_y:label_b},session=sess)

            print('Step {0} tranining accuracy {1}'.format(step,train_accuracy))

    3.运行

    CUDA_VISIBLE_DEVICES=1 python wzwtrain13.py

    4.运行结果

    图2 训练结束

    相关文章

      网友评论

          本文标题:Tensorflow 学习(4)实现CIFAR_10小数据集分类

          本文链接:https://www.haomeiwen.com/subject/lppmxctx.html