美文网首页
Lenet5+NoStructure+Python

Lenet5+NoStructure+Python

作者: 一筐_8dc5 | 来源:发表于2019-07-21 17:39 被阅读0次
Lenet5

conv1:32*32->6*28*28->relu:f(x)=max(0,x)

    kenel:6*(1*5*5)

    param:6*(1*5*5+1)

    conn:6*(1*5*5+1)*28*28

pool2:6*28*28->6*14*14

    kenel:6*(2*2)

    param:6*(2*2+1)

    conn:6*(2*2+1)*14*14

conv3:6*14*14->16*10*10->relu

conv3

    kenel:16*(5*5)

    param:6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(5*5*5+1)

    conn:[6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)+1*(5*5*5+1)]*10*10

pool4:16*10*10->16*5*5

    kenel:16*(2*2)

    param:16*(2*2+1)

    conn:16*(2*2+1)*5*5

fc5:16*5*5->120*1*1->relu

    kenel:120*(16*5*5)

    param:120*(16*5*5+1)

    conn:120*(16*5*5+1)*1*1

fc6:120*1*1->84*1*1->relu

    kenel:84*(120*1*1)

    param:84*(120*1*1+1)

    conn:84*(120*1*1+1)*1*1

fc7:84*1*1->10*1*1

    kenel:10*(84*1*1)

    param:10*(84*1*1+1)

    conn:10*(84*1*1+1)*1*1

rule:src*a*a->dest*b*b

    kenel:dest*(src*k*k)

    param:dest*(src*k*k+1)

    conn:dest*(src*k*k+1)*b*b


# -*- coding: utf-8 -*-

'''

Name:LeNet5.py

Author: JoyZhou

Date:20190721

'''

import numpy as np

from scipy.signal import convolve2d

from skimage.measure import block_reduce

import fetch_MNIST

class LeNet5(object):

    def __init__(self, lr=0.1):

        # learn rate:

        self.lr = lr

        # conv1

        self.conv1 = xavier_init(6, 1, 5, 5)

        # pool2

        self.pool2 = [2, 2]

        # conv3

        self.conv3 = xavier_init(16, 6, 5, 5)

        # pool4

        self.pool4 = [2, 2]

        # conn5

        self.fc5 = xavier_init(256, 200, fc=True)

        # conn6

        self.fc6 = xavier_init(200, 10, fc=True)

    def forward_prop(self, input_data):

        self.l0 = np.expand_dims(input_data, axis=1) / 255  # 64*1*28*28

        self.l1 = self.convolution(self.l0, self.conv1)      # 64*1*28*28 6*1*5*5 -> 64*6*24*24

        self.l2 = self.mean_pool(self.l1, self.pool2)        # 64*6*24*24 -> 64*6*12*12

        self.l3 = self.convolution(self.l2, self.conv3)      # 64*6*12*12 16*6*5*5 -> 64*16*8*8

        self.l4 = self.mean_pool(self.l3, self.pool4)        # 64*16*8*8  -> 64*16*4*4

        self.l5 = self.fully_connect(self.l4, self.fc5)      # 64*256 256*200 -> 64*200

        self.l6 = self.relu(self.l5)                        # 64*200

        self.l7 = self.fully_connect(self.l6, self.fc6)      # 64*200 200*10 -> 64*10

        self.l8 = self.relu(self.l7)                        # 64*10

        self.l9 = self.softmax(self.l8)                      # 64*10

        return self.l9

    def backward_prop(self, softmax_output, output_label):

        l8_delta            = (output_label - softmax_output) / softmax_output.shape[0]    # 64*10

        l7_delta            = self.relu(self.l8, l8_delta, deriv=True)                    # 64*10

        l6_delta, self.fc6  = self.fully_connect(self.l6, self.fc6, l7_delta, deriv=True)  # 64*200 200*10 64*10 -> 64*200 200*10

        l5_delta            = self.relu(self.l6, l6_delta, deriv=True)                    # 64*200

        l4_delta, self.fc5  = self.fully_connect(self.l4, self.fc5, l5_delta, deriv=True)  # 64*16*4*4 256*200 64*200 -> 64*16*4*4 256*200

        l3_delta            = self.mean_pool(self.l3, self.pool4, l4_delta, deriv=True)    # 64*16*8*8 2*2 64*16*4*4 -> 64*16*8*8

        l2_delta, self.conv3 = self.convolution(self.l2, self.conv3, l3_delta, deriv=True)  # (batch_sz, 6, 12, 12)

        l1_delta            = self.mean_pool(self.l1, self.pool2, l2_delta, deriv=True)    # (batch_sz, 6, 24, 24)

        l0_delta, self.conv1 = self.convolution(self.l0, self.conv1, l1_delta, deriv=True)  # (batch_sz, 1, 28, 28)

    def convolution(self, input_map, kernal, front_delta=None, deriv=False):

        N, C, W, H = input_map.shape    # 1:64*1*28*28

        K_N, K_C, K_W, K_H = kernal.shape # 1:6*1*5*5

        if deriv == False:

            feature_map = np.zeros((N, K_N, W-K_W+1, H-K_H+1))  # 1:64*6*24*24

            for img in range(N):    # img 64

                for kId in range(K_N):  # kenel 6

                    for cId in range(C):    # channel 1

                        feature_map[img][kId] += \

                          convolve2d(input_map[img][cId], kernal[kId,cId,:,:], mode='valid') # 28*28 5*5 -> 24*24

            return feature_map

        else :

            # front->back (propagate loss)

            back_delta = np.zeros((N, C, W, H))

            kernal_gradient = np.zeros((K_N, K_C, K_W, K_H))

            padded_front_delta = \

              np.pad(front_delta, [(0,0), (0,0), (K_W-1, K_H-1), (K_W-1, K_H-1)], mode='constant', constant_values=0)

            for imgId in range(N):

                for cId in range(C):

                    for kId in range(K_N):

                        back_delta[imgId][cId] += \

                          convolve2d(padded_front_delta[imgId][kId], kernal[kId,cId,::-1,::-1], mode='valid')

                        kernal_gradient[kId][cId] += \

                          convolve2d(front_delta[imgId][kId], input_map[imgId,cId,::-1,::-1], mode='valid')

            # update weights

            kernal += self.lr * kernal_gradient

            return back_delta, kernal

    def mean_pool(self, input_map, pool, front_delta=None, deriv=False):

        N, C, W, H = input_map.shape

        P_W, P_H = tuple(pool)

        if deriv == False:

            # feature_map = np.zeros((N, C, W/P_W, H/P_H))

            feature_map = block_reduce(input_map, tuple((1, 1, P_W, P_H)), func=np.mean)

            return feature_map

        else :

            # front->back (propagate loss)

            back_delta = np.zeros((N, C, W, H))

            back_delta = front_delta.repeat(P_W, axis = 2).repeat(P_H, axis = 3)

            back_delta /= (P_W * P_H)

            return back_delta

    def fully_connect(self, input_data, fc, front_delta=None, deriv=False):

        N = input_data.shape[0]

        if deriv == False:

            output_data = np.dot(input_data.reshape(N, -1), fc)

            return output_data

        else :

            # 1:64*10 * 10*200 -> 64*200    2:64*200 * 200*256 -> 64*256 -> 64*16*4*4

            back_delta = np.dot(front_delta, fc.T).reshape(input_data.shape)    # 误差*参数转置

            # update weights 1:64*200 -> 200*64 * 64*10 -> 200*10  2:64*16*4*4->64*256->256*64 * 64*200 -> 256*200

            fc += self.lr * np.dot(input_data.reshape(N, -1).T, front_delta)    # 输入转置*误差

            return back_delta, fc

    def relu(self, x, front_delta=None, deriv=False):

        if deriv == False:

            return x * (x > 0)

        else :

            # propagate loss

            back_delta = front_delta * 1. * (x > 0)

            return back_delta

    def softmax(self, x):

        y = list()

        for t in x:

            e_t = np.exp(t - np.max(t))

            y.append(e_t / e_t.sum())

        return np.array(y)

def xavier_init(c1, c2, w=1, h=1, fc=False):

    fan_1 = c2 * w * h

    fan_2 = c1 * w * h

    ratio = np.sqrt(6.0 / (fan_1 + fan_2))

    params = ratio * (2*np.random.random((c1, c2, w, h)) - 1)

    if fc == True:

        params = params.reshape(c1, c2)

    return params

def convertToOneHot(labels):

    oneHotLabels = np.zeros((labels.size, labels.max()+1))

    oneHotLabels[np.arange(labels.size), labels] = 1

    return oneHotLabels

def shuffle_dataset(data, label):

    N = data.shape[0]

    index = np.random.permutation(N)

    x = data[index, :, :]; y = label[index, :]

    return x, y

if __name__ == '__main__':

    train_imgs = fetch_MNIST.load_train_images()    # 60,000*28*28

    train_labs = fetch_MNIST.load_train_labels().astype(int) # 60,000*1

    # data                 

    data_size = train_imgs.shape[0] # 60000

    # batch

    batch_size = 64

    # learning rate

    lr = 0.01

    # max iteration   

    max_iter = 50000;

    # total

    iter_mod = int(data_size/batch_size) # 937

    # one-hot

    train_labs = convertToOneHot(train_labs) # 60000*10

    # forward train

    train = LeNet5(lr)

    for iters in range(max_iter):

        # start index

        start_idx = (iters % iter_mod) * batch_size # 0,64,128...

        # shuffle the dataset

        if start_idx == 0:

            train_imgs, train_labs = shuffle_dataset(train_imgs, train_labs)

        input_data = train_imgs[start_idx : start_idx + batch_size] # [0:64],[64:128],[128,192]...

        output_label = train_labs[start_idx : start_idx + batch_size]# [0:64],[64:128],[128,192]...

        output_train = train.forward_prop(input_data)  # 64*28*28

        if iters % 50 == 0:

            # correct_number/batch_size

            correct_list = [ int(np.argmax(output_train[i])==np.argmax(output_label[i])) for i in range(batch_size) ]

            accuracy = float(np.array(correct_list).sum()) / batch_size

            # calculate loss

            correct_prob = [ output_train[i][np.argmax(output_label[i])] for i in range(batch_size) ]

            # relu

            for i in range(len(correct_prob)):

                if correct_prob[i] > 0:

                    continue

                else:

                    correct_prob[i] = 0

            loss = -1.0 * np.sum(np.log(correct_prob))

            print ("The %d iters result:" % iters)

            print ("The accuracy is %f The loss is %f " % (accuracy, loss))

        train.backward_prop(output_train, output_label)


# encoding: utf-8

'''

Name: fetch_MNIST.py

'''

import numpy as np

import struct

import matplotlib.pyplot as plt

#data_path = '/Users/didi/Desktop/python_workspace/Neural Network/data/'

# 训练集文件

train_images_idx3_ubyte_file = './data/train-images-idx3-ubyte'

# 训练集标签文件

train_labels_idx1_ubyte_file = './data/train-labels-idx1-ubyte'

# 测试集文件

test_images_idx3_ubyte_file = './data/t10k-images-idx3-ubyte'

# 测试集标签文件

test_labels_idx1_ubyte_file = './data/t10k-labels-idx1-ubyte'

def decode_idx3_ubyte(idx3_ubyte_file):

    """

    解析idx3文件的通用函数

    :param idx3_ubyte_file: idx3文件路径

    :return: 数据集

    """

    # 读取二进制数据

    bin_data = open(idx3_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数、图片数量、每张图片高、每张图片宽

    offset = 0

    fmt_header = '>iiii'

    magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, offset)

    print ('模数:%d, 图片数量: %d张, 图片大小: %d*%d' % (magic_number, num_images, num_rows, num_cols))

    # 解析数据集

    image_size = num_rows * num_cols

    offset += struct.calcsize(fmt_header)

    fmt_image = '>' + str(image_size) + 'B'

    images = np.empty((num_images, num_rows, num_cols))

    for i in range(num_images):

        if (i + 1) % 10000 == 0:

            print ('已解析 %d' % (i + 1) + '张')

        images[i] = np.array(struct.unpack_from(fmt_image, bin_data, offset)).reshape((num_rows, num_cols))

        offset += struct.calcsize(fmt_image)

    return images

def decode_idx1_ubyte(idx1_ubyte_file):

    """

    解析idx1文件的通用函数

    :param idx1_ubyte_file: idx1文件路径

    :return: 数据集

    """

    # 读取二进制数据

    bin_data = open(idx1_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数和标签数

    offset = 0

    fmt_header = '>ii'

    magic_number, num_images = struct.unpack_from(fmt_header, bin_data, offset)

    print ('模数:%d, 图片数量: %d张' % (magic_number, num_images))

    # 解析数据集

    offset += struct.calcsize(fmt_header)

    fmt_image = '>B'

    labels = np.empty(num_images)

    for i in range(num_images):

        if (i + 1) % 10000 == 0:

            print ('已解析 %d' % (i + 1) + '张')

        labels[i] = struct.unpack_from(fmt_image, bin_data, offset)[0]

        offset += struct.calcsize(fmt_image)

    return labels

def load_train_images(idx_ubyte_file=train_images_idx3_ubyte_file):

    """

    TRAINING SET IMAGE FILE (train-images-idx3-ubyte):

    [offset] [type]          [value]          [description]

    0000    32 bit integer  0x00000803(2051) magic number

    0004    32 bit integer  60000            number of images

    0008    32 bit integer  28              number of rows

    0012    32 bit integer  28              number of columns

    0016    unsigned byte  ??              pixel

    0017    unsigned byte  ??              pixel

    ........

    xxxx    unsigned byte  ??              pixel

    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

    :param idx_ubyte_file: idx文件路径

    :return: n*row*col维np.array对象,n为图片数量

    """

    return decode_idx3_ubyte(idx_ubyte_file)

def load_train_labels(idx_ubyte_file=train_labels_idx1_ubyte_file):

    """

    TRAINING SET LABEL FILE (train-labels-idx1-ubyte):

    [offset] [type]          [value]          [description]

    0000    32 bit integer  0x00000801(2049) magic number (MSB first)

    0004    32 bit integer  60000            number of items

    0008    unsigned byte  ??              label

    0009    unsigned byte  ??              label

    ........

    xxxx    unsigned byte  ??              label

    The labels values are 0 to 9.

    :param idx_ubyte_file: idx文件路径

    :return: n*1维np.array对象,n为图片数量

    """

    return decode_idx1_ubyte(idx_ubyte_file)

def load_test_images(idx_ubyte_file=test_images_idx3_ubyte_file):

    """

    TEST SET IMAGE FILE (t10k-images-idx3-ubyte):

    [offset] [type]          [value]          [description]

    0000    32 bit integer  0x00000803(2051) magic number

    0004    32 bit integer  10000            number of images

    0008    32 bit integer  28              number of rows

    0012    32 bit integer  28              number of columns

    0016    unsigned byte  ??              pixel

    0017    unsigned byte  ??              pixel

    ........

    xxxx    unsigned byte  ??              pixel

    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).

    :param idx_ubyte_file: idx文件路径

    :return: n*row*col维np.array对象,n为图片数量

    """

    return decode_idx3_ubyte(idx_ubyte_file)

def load_test_labels(idx_ubyte_file=test_labels_idx1_ubyte_file):

    """

    TEST SET LABEL FILE (t10k-labels-idx1-ubyte):

    [offset] [type]          [value]          [description]

    0000    32 bit integer  0x00000801(2049) magic number (MSB first)

    0004    32 bit integer  10000            number of items

    0008    unsigned byte  ??              label

    0009    unsigned byte  ??              label

    ........

    xxxx    unsigned byte  ??              label

    The labels values are 0 to 9.

    :param idx_ubyte_file: idx文件路径

    :return: n*1维np.array对象,n为图片数量

    """

    return decode_idx1_ubyte(idx_ubyte_file)

def run():

    train_images = load_train_images() # (60000, 28, 28) 0~255

    train_labels = load_train_labels() # (60000,)        1~10

    # test_images = load_test_images()

    # test_labels = load_test_labels()

    print (type(train_images), train_images.shape)

    print (type(train_labels), train_labels.shape)

    # 查看前十个数据及其标签以读取是否正确

    for i in range(10):

        print (train_labels[i])

        print (np.max(train_images), np.min(train_images))

        plt.imshow(train_images[i], cmap='gray')

        plt.show()

if __name__ == '__main__':

    run()

相关文章

网友评论

      本文标题:Lenet5+NoStructure+Python

      本文链接:https://www.haomeiwen.com/subject/lqfvlctx.html