美文网首页
【Stata】多元回归

【Stata】多元回归

作者: YiYa_咿呀 | 来源:发表于2024-01-02 23:25 被阅读0次

蒙特卡罗模拟

 ___  ____  ____  ____  ____ (R)
 /__    /   ____/   /   ____/
___/   /   /___/   /   /___/   14.0   Copyright 1985-2015 StataCorp LP
  Statistics/Data Analysis            StataCorp
                                      4905 Lakeway Drive
     MP - Parallel Edition            College Station, Texas 77845 USA
                                      800-STATA-PC        http://www.stata.com
                                      979-696-4600        stata@stata.com
                                      979-696-4601 (fax)

Single-user 8-core Stata perpetual license:
       Serial number:  10699393
         Licensed to:  123
                       123

Notes:
      1.  Unicode is supported; see help unicode_advice.
      2.  More than 2 billion observations are allowed; see help obs_advice.
      3.  Maximum number of variables is set to 5000; see help set_maxvar.
      4.  New update available; type -update all-

running c:\ado\plus\profile.do ...

. use "D:\A-Education\Study\计量经济学\data\dta\grilic.dta", clear

. regress lnw s expr tenure smsa rns

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(5, 752)       =     81.75
       Model |  49.0478814         5  9.80957628   Prob > F        =    0.0000
    Residual |  90.2382684       752  .119997697   R-squared       =    0.3521
-------------+----------------------------------   Adj R-squared   =    0.3478
       Total |   139.28615       757  .183997556   Root MSE        =    .34641

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |    .102643   .0058488    17.55   0.000     .0911611     .114125
        expr |   .0381189   .0063268     6.02   0.000     .0256986    .0505392
      tenure |   .0356146   .0077424     4.60   0.000     .0204153    .0508138
        smsa |   .1396666   .0280821     4.97   0.000     .0845379    .1947954
         rns |  -.0840797   .0287973    -2.92   0.004    -.1406124   -.0275471
       _cons |   4.103675    .085097    48.22   0.000     3.936619    4.270731
------------------------------------------------------------------------------

. vce

Covariance matrix of coefficients of regress model

        e(V) |          s        expr      tenure        smsa         rns       _cons 
-------------+------------------------------------------------------------------------
           s |  .00003421                                                             
        expr |  8.660e-06   .00004003                                                 
      tenure | -3.997e-08  -.00001107   .00005994                                     
        smsa |  -.0000144   3.261e-06  -7.819e-06   .00078861                         
         rns |  8.524e-06   7.334e-07   7.259e-06   .00012486   .00082928             
       _cons | -.00046567  -.00016778  -.00008646  -.00038746  -.00043997    .0072415 

. regress lnw s expr tenure smsa rns,noc

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(5, 753)       =   9902.73
       Model |  24282.9531         5  4856.59061   Prob > F        =    0.0000
    Residual |  369.293555       753  .490429688   R-squared       =    0.9850
-------------+----------------------------------   Adj R-squared   =    0.9849
       Total |  24652.2466       758  32.5227528   Root MSE        =    .70031

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .3665333   .0041742    87.81   0.000     .3583389    .3747277
        expr |   .1331991   .0121535    10.96   0.000     .1093403    .1570578
      tenure |   .0846129   .0155168     5.45   0.000     .0541515    .1150743
        smsa |   .3592339   .0560206     6.41   0.000     .2492588    .4692089
         rns |   .1652489   .0572715     2.89   0.004     .0528181    .2776796
------------------------------------------------------------------------------

. regress lnw s expr tenure smsa rns if rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       204
-------------+----------------------------------   F(4, 199)       =     36.07
       Model |   17.603542         4  4.40088551   Prob > F        =    0.0000
    Residual |  24.2783596       199  .122001807   R-squared       =    0.4203
-------------+----------------------------------   Adj R-squared   =    0.4087
       Total |  41.8819016       203  .206314786   Root MSE        =    .34929

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1198242   .0113156    10.59   0.000     .0975103    .1421381
        expr |   .0451903   .0122572     3.69   0.000     .0210197     .069361
      tenure |   .0092643   .0156779     0.59   0.555    -.0216518    .0401804
        smsa |   .1746563   .0506762     3.45   0.001     .0747251    .2745876
         rns |          0  (omitted)
       _cons |   3.806148   .1586202    24.00   0.000     3.493356     4.11894
------------------------------------------------------------------------------

. regress lnw s expr tenure smsa rns if ~rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       554
-------------+----------------------------------   F(4, 549)       =     62.45
       Model |   29.486457         4  7.37161426   Prob > F        =    0.0000
    Residual |  64.8019636       549  .118036364   R-squared       =    0.3127
-------------+----------------------------------   Adj R-squared   =    0.3077
       Total |  94.2884207       553  .170503473   Root MSE        =    .34356

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .0944787   .0068365    13.82   0.000     .0810498    .1079076
        expr |   .0358675   .0073558     4.88   0.000     .0214184    .0503165
      tenure |   .0455117   .0088792     5.13   0.000     .0280703    .0629531
        smsa |   .1199364   .0337443     3.55   0.000     .0536526    .1862202
         rns |          0  (omitted)
       _cons |   4.214014   .0995796    42.32   0.000     4.018411    4.409618
------------------------------------------------------------------------------

. regress lnw s expr tenure smsa rns if s>=12

      Source |       SS           df       MS      Number of obs   =       679
-------------+----------------------------------   F(5, 673)       =     69.81
       Model |  41.8750434         5  8.37500867   Prob > F        =    0.0000
    Residual |  80.7410668       673  .119971867   R-squared       =    0.3415
-------------+----------------------------------   Adj R-squared   =    0.3366
       Total |   122.61611       678   .18084972   Root MSE        =    .34637

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1077261   .0066792    16.13   0.000     .0946115    .1208408
        expr |   .0344524   .0071189     4.84   0.000     .0204745    .0484304
      tenure |   .0363033   .0082594     4.40   0.000     .0200859    .0525206
        smsa |   .1583146   .0298248     5.31   0.000     .0997537    .2168754
         rns |   -.074063   .0308884    -2.40   0.017    -.1347123   -.0134137
       _cons |   4.015335    .098159    40.91   0.000       3.8226     4.20807
------------------------------------------------------------------------------

. regress lnw s expr tenure smsa rns if s>=12 & rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       174
-------------+----------------------------------   F(4, 169)       =     32.17
       Model |   15.404067         4  3.85101675   Prob > F        =    0.0000
    Residual |  20.2300414       169  .119704387   R-squared       =    0.4323
-------------+----------------------------------   Adj R-squared   =    0.4188
       Total |  35.6341084       173  .205977505   Root MSE        =    .34598

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1269124   .0131847     9.63   0.000     .1008845    .1529404
        expr |   .0226531   .0156062     1.45   0.148    -.0081551    .0534613
      tenure |   .0146869   .0182079     0.81   0.421    -.0212573    .0506312
        smsa |   .2136309   .0548788     3.89   0.000     .1052947    .3219671
         rns |          0  (omitted)
       _cons |   3.699026   .1873691    19.74   0.000     3.329141    4.068912
------------------------------------------------------------------------------

. quietly regress lnw s expr tenure smsa rns,noc

. quietly regress lnw s expr tenure smsa rns

. predict lnw_pre
(option xb assumed; fitted values)

. predict e,residual

. save "D:\A-Education\Study\计量经济学\data\practice\grilic_0103.dta"
file D:\A-Education\Study\计量经济学\data\practice\grilic_0103.dta saved

. use "D:\A-Education\Study\计量经济学\data\practice\蒙特卡罗模拟0102.dta", clear

. do "D:\A-Education\Study\计量经济学\data\practice\蒙特卡罗模拟0102.do"

. use "D:\A-Education\Study\计量经济学\data\dta\grilic_small.dta", clear

. use "D:\A-Education\Study\计量经济学\data\dta\grilic.dta", clear

. regress lnw s

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(1, 756)       =    255.70
       Model |  35.2039946         1  35.2039946   Prob > F        =    0.0000
    Residual |  104.082155       756  .137674809   R-squared       =    0.2527
-------------+----------------------------------   Adj R-squared   =    0.2518
       Total |   139.28615       757  .183997556   Root MSE        =    .37105

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .0966245   .0060425    15.99   0.000     .0847624    .1084866
       _cons |   4.391486   .0821136    53.48   0.000     4.230288    4.552684
------------------------------------------------------------------------------

. regress lnw s,noc

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(1, 757)       =  36727.24
       Model |  24154.3906         1  24154.3906   Prob > F        =    0.0000
    Residual |  497.855977       757  .657669719   R-squared       =    0.9798
-------------+----------------------------------   Adj R-squared   =    0.9798
       Total |  24652.2466       758  32.5227528   Root MSE        =    .81097

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .4154001   .0021676   191.64   0.000     .4111449    .4196553
------------------------------------------------------------------------------

. sum s

    Variable |        Obs        Mean    Std. Dev.       Min        Max
-------------+---------------------------------------------------------
           s |        758    13.40501    2.231828          9         18

. return list

scalars:
                  r(N) =  758
              r(sum_w) =  758
               r(mean) =  13.40501319261214
                r(Var) =  4.981058057949899
                 r(sd) =  2.231828411403955
                r(min) =  9
                r(max) =  18
                r(sum) =  10161

. display r(sd)/r(mean)
.16649207

. reg lnw s

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(1, 756)       =    255.70
       Model |  35.2039946         1  35.2039946   Prob > F        =    0.0000
    Residual |  104.082155       756  .137674809   R-squared       =    0.2527
-------------+----------------------------------   Adj R-squared   =    0.2518
       Total |   139.28615       757  .183997556   Root MSE        =    .37105

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .0966245   .0060425    15.99   0.000     .0847624    .1084866
       _cons |   4.391486   .0821136    53.48   0.000     4.230288    4.552684
------------------------------------------------------------------------------

. ereturn list

scalars:
                  e(N) =  758
               e(df_m) =  1
               e(df_r) =  756
                  e(F) =  255.7039662336325
                 e(r2) =  .2527458374860051
               e(rmse) =  .3710455612613365
                e(mss) =  35.20399459202193
                e(rss) =  104.0821552499956
               e(r2_a) =  .2517574060541082
                 e(ll) =  -323.0498302841153
               e(ll_0) =  -433.4714451849196
               e(rank) =  2

macros:
            e(cmdline) : "regress lnw s"
              e(title) : "Linear regression"
          e(marginsok) : "XB default"
                e(vce) : "ols"
             e(depvar) : "lnw"
                e(cmd) : "regress"
         e(properties) : "b V"
            e(predict) : "regres_p"
              e(model) : "ols"
          e(estat_cmd) : "regress_estat"

matrices:
                  e(b) :  1 x 2
                  e(V) :  2 x 2

functions:
             e(sample)   

. clear

. set obs 30
number of observations (_N) was 0, now 30

. set seed 10101

. gen x = rnormal(3,4)

. gen e = rnormal(0,9)

. gen y = 1 + 2*x + e

. reg y x

      Source |       SS           df       MS      Number of obs   =        30
-------------+----------------------------------   F(1, 28)        =     37.50
       Model |  2832.54477         1  2832.54477   Prob > F        =    0.0000
    Residual |  2114.75553        28  75.5269833   R-squared       =    0.5725
-------------+----------------------------------   Adj R-squared   =    0.5573
       Total |   4947.3003        29  170.596562   Root MSE        =    8.6906

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           x |    2.01285   .3286805     6.12   0.000     1.339578    2.686121
       _cons |   1.042369    1.90375     0.55   0.588    -2.857286    4.942023
------------------------------------------------------------------------------

. twoway function PRF=1+2*x,range(-5 15) || scatter y x || lfit y x,lpattern(dash)

. save "D:\A-Education\Study\计量经济学\data\dta\蒙特卡罗模拟0102.dta"

运行结果.png

Stata命令分类

  • r命令:返回非估计结果的scalar变量
  • e命令:返回估计问题的scalar变量结果
//返回r命令的结果
return list
//返回e命令的结果
ereturn list
. ereturn list

scalars:
               e(rank) =  2
               e(ll_0) =  -119.1491549584417
                 e(ll) =  -106.400612732956
               e(r2_a) =  .5572772251452395
                e(rss) =  2114.755532755231
                e(mss) =  2832.544765465164
               e(rmse) =  8.690626174947742
                 e(r2) =  .5725435277264381
                  e(F) =  37.50374556518744
               e(df_r) =  28
               e(df_m) =  1
                  e(N) =  30

macros:
            e(cmdline) : "regress y x"
              e(title) : "Linear regression"
          e(marginsok) : "XB default"
                e(vce) : "ols"
             e(depvar) : "y"
                e(cmd) : "regress"
         e(properties) : "b V"
            e(predict) : "regres_p"
              e(model) : "ols"
          e(estat_cmd) : "regress_estat"

matrices:
                  e(b) :  1 x 2
                  e(V) :  2 x 2

functions:
             e(sample)  
# 多元回归
regress y x1 x2
# 自动预测lny的值
predict pre_lny
# 自动计算残差项e
predict e,residual
# 展示真实值,预测值和残差
list lny pre_lny e
# 区分真实值和拟合值-图示法
line lny pre_lny year,lpattern(solid dashed)
# 有常数项的
regress y x
# 无常数项的
regress y x, noconstant
regress y x, noc
regression.png
stata其他命令.png
# rules
regress y x1 x2 x3

regress lnw s expr tenure smsa rns

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(5, 752)       =     81.75
       Model |  49.0478814         5  9.80957628   Prob > F        =    0.0000
    Residual |  90.2382684       752  .119997697   R-squared       =    0.3521
-------------+----------------------------------   Adj R-squared   =    0.3478
       Total |   139.28615       757  .183997556   Root MSE        =    .34641

vce
# 显示所有洗漱的协方差矩阵
Covariance matrix of coefficients of regress model

        e(V) |          s        expr      tenure        smsa         rns       _cons 
-------------+------------------------------------------------------------------------
           s |  .00003421                                                             
        expr |  8.660e-06   .00004003                                                 
      tenure | -3.997e-08  -.00001107   .00005994                                     
        smsa |  -.0000144   3.261e-06  -7.819e-06   .00078861                         
         rns |  8.524e-06   7.334e-07   7.259e-06   .00012486   .00082928             
       _cons | -.00046567  -.00016778  -.00008646  -.00038746  -.00043997    .0072415

# 无常数项回归
regress lnw s expr tenure smsa rns,noc

      Source |       SS           df       MS      Number of obs   =       758
-------------+----------------------------------   F(5, 753)       =   9902.73
       Model |  24282.9531         5  4856.59061   Prob > F        =    0.0000
    Residual |  369.293555       753  .490429688   R-squared       =    0.9850
-------------+----------------------------------   Adj R-squared   =    0.9849
       Total |  24652.2466       758  32.5227528   Root MSE        =    .70031

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .3665333   .0041742    87.81   0.000     .3583389    .3747277
        expr |   .1331991   .0121535    10.96   0.000     .1093403    .1570578
      tenure |   .0846129   .0155168     5.45   0.000     .0541515    .1150743
        smsa |   .3592339   .0560206     6.41   0.000     .2492588    .4692089
         rns |   .1652489   .0572715     2.89   0.004     .0528181    .2776796
------------------------------------------------------------------------------

# 南方居民
regress lnw s expr tenure smsa rns if rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       204
-------------+----------------------------------   F(4, 199)       =     36.07
       Model |   17.603542         4  4.40088551   Prob > F        =    0.0000
    Residual |  24.2783596       199  .122001807   R-squared       =    0.4203
-------------+----------------------------------   Adj R-squared   =    0.4087
       Total |  41.8819016       203  .206314786   Root MSE        =    .34929

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1198242   .0113156    10.59   0.000     .0975103    .1421381
        expr |   .0451903   .0122572     3.69   0.000     .0210197     .069361
      tenure |   .0092643   .0156779     0.59   0.555    -.0216518    .0401804
        smsa |   .1746563   .0506762     3.45   0.001     .0747251    .2745876
         rns |          0  (omitted)
       _cons |   3.806148   .1586202    24.00   0.000     3.493356     4.11894
------------------------------------------------------------------------------

# 非南方居民
regress lnw s expr tenure smsa rns if ~rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       554
-------------+----------------------------------   F(4, 549)       =     62.45
       Model |   29.486457         4  7.37161426   Prob > F        =    0.0000
    Residual |  64.8019636       549  .118036364   R-squared       =    0.3127
-------------+----------------------------------   Adj R-squared   =    0.3077
       Total |  94.2884207       553  .170503473   Root MSE        =    .34356

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .0944787   .0068365    13.82   0.000     .0810498    .1079076
        expr |   .0358675   .0073558     4.88   0.000     .0214184    .0503165
      tenure |   .0455117   .0088792     5.13   0.000     .0280703    .0629531
        smsa |   .1199364   .0337443     3.55   0.000     .0536526    .1862202
         rns |          0  (omitted)
       _cons |   4.214014   .0995796    42.32   0.000     4.018411    4.409618
------------------------------------------------------------------------------
# 教育年限>=12年
regress lnw s expr tenure smsa rns if s>=12

      Source |       SS           df       MS      Number of obs   =       679
-------------+----------------------------------   F(5, 673)       =     69.81
       Model |  41.8750434         5  8.37500867   Prob > F        =    0.0000
    Residual |  80.7410668       673  .119971867   R-squared       =    0.3415
-------------+----------------------------------   Adj R-squared   =    0.3366
       Total |   122.61611       678   .18084972   Root MSE        =    .34637

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1077261   .0066792    16.13   0.000     .0946115    .1208408
        expr |   .0344524   .0071189     4.84   0.000     .0204745    .0484304
      tenure |   .0363033   .0082594     4.40   0.000     .0200859    .0525206
        smsa |   .1583146   .0298248     5.31   0.000     .0997537    .2168754
         rns |   -.074063   .0308884    -2.40   0.017    -.1347123   -.0134137
       _cons |   4.015335    .098159    40.91   0.000       3.8226     4.20807
------------------------------------------------------------------------------

# 教育年限大于等于12的南方居民
regress lnw s expr tenure smsa rns if s>=12 & rns
note: rns omitted because of collinearity

      Source |       SS           df       MS      Number of obs   =       174
-------------+----------------------------------   F(4, 169)       =     32.17
       Model |   15.404067         4  3.85101675   Prob > F        =    0.0000
    Residual |  20.2300414       169  .119704387   R-squared       =    0.4323
-------------+----------------------------------   Adj R-squared   =    0.4188
       Total |  35.6341084       173  .205977505   Root MSE        =    .34598

------------------------------------------------------------------------------
         lnw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           s |   .1269124   .0131847     9.63   0.000     .1008845    .1529404
        expr |   .0226531   .0156062     1.45   0.148    -.0081551    .0534613
      tenure |   .0146869   .0182079     0.81   0.421    -.0212573    .0506312
        smsa |   .2136309   .0548788     3.89   0.000     .1052947    .3219671
         rns |          0  (omitted)
       _cons |   3.699026   .1873691    19.74   0.000     3.329141    4.068912
------------------------------------------------------------------------------

# 不显示结果
quietly regress lnw s expr tenure smsa rns,noc
1.png
2.png
3.png
4.png
5.png
6.png
7.png
8.png
9.png

今天计量经济学学到第六章了
好样的,准备晚上再学到一点钟就睡觉,加油加油~


老师给我发论文了.png
老师今天给我发论文了
我慌死了,打开PDF傻眼了,真的好多哇……
全英文论文,加起来四篇应该差不多200页
不能抱怨!
想一想如何能够尽量少走弯路读完
寒假可能很难回家了
准备在家过个大年就回武汉

相关文章

网友评论

      本文标题:【Stata】多元回归

      本文链接:https://www.haomeiwen.com/subject/lrhpndtx.html