CNN

作者: scpy | 来源:发表于2018-12-28 14:50 被阅读0次
    # -*- coding: utf-8 -*-
    import tensorflow as tf
    import os 
    import pandas as pd
    
    #超参数
    INPUT_NODE = 784
    OUTPUT_NODE = 10
    IMAGE_SIZE = 28
    NUM_CHANNELS = 1
    NUM_LABELS = 10
    #第一层
    CONV1_DEEP = 32
    CONV1_SIZE = 5
    # 第二层
    CONV2_DEEP = 64
    CONV2_SIZE = 5
    # FC
    FC_SIZE = 512
    
    #CNN 前向传播
    def inference(input_tensor, train, regularizer):
        #卷积层1 28*28*1 -> 28*28*32
        with tf.variable_scope('layer1-conv1'): #5*5*32过滤器
            conv1_weights = tf.get_variable("weight", 
                [CONV1_SIZE, CONV1_SIZE, NUM_LABELS, CONV1_DEEP], 
                initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv1_bias = tf.get_variable("bias", [CONV1_DEEP],  
                initializer=tf.constant_initializer(0.0))
            #strides步长为1, padding全0填充
            conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1,1,1,1], padding = 'SAME')
            relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
    
        #池化层1 28*28*32 -> 14*14*32
        #name_scope 是给op_name加前缀, variable_scope是给get_variable()创建的变量的名字加前缀。
        with tf.name_scope('layer2-pool1'):
            pool1 = tf.nn.max_pool(relu1, ksize=[1,2,2,1], strides=[1,2,2,1], padding = 'SAME')
    
        #卷积层2 14*14*32 -> 14*14*64
        with tf.variable_scope('layer3-conv2'):
            conv2_weights = tf.get_variable("weight",
                [CONV2_SIZE, CONV2_SIZE, NUM_LABELS, CONV2_DEEP],
                initializer=tf.truncated_normal_initializer(stddev=0.1))
            conv2_bias = tf.get_variable("bias", [CONV2_DEEP],
                initializer=tf.constant_initializer(0.0))
            conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1,1,1,1], padding = 'SAME')
            relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
    
        #池化层2 14*14*64 -> 7*7*64
        with tf.name_scope('layer4-pool2'):
            pool2 = tf.nn.max_pool(relu2, ksize=[1,2,2,1], strides=[1,2,2,1], padding = 'SAME')
    
        ##输入FC前reshape shape为 batch_size*7*7*64 pool_shape[0]为batch_size
        pool_shape = pool2.get_shape().as_list() 
        nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
        reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
    
        #FC1 49*64拉直, 用dropout避免过拟合
        with tf.variable_scope("layer5-fc1"):
            fc1_weights = tf.get_variable("weight", 
                [nodes, FC_SIZE], initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None:
                #可以认为这里的regularizer是个函数指针
                tf.add_to_collection('losses', regularizer(fc1_weights))
            fc1_bias = tf.get_variable("bias", [FC_SIZE], tf.constant_initializer(0.0))
    
            fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_bias)
            if train:
                fc1 = tf.nn.dropout(fc1, 0.5) #dropout一般只在fc层使用
    
        with tf.variable_scope("layer6-fc2"):
            fc2_weights = tf.get_variable("weight", 
                [FC_SIZE, NUM_LABELS], initializer=tf.truncated_normal_initializer(stddev=0.1))
            if regularizer != None:
                #可以认为这里的regularizer是个函数指针
                tf.add_to_collection('losses', regularizer(fc2_weights))
            fc2_bias = tf.get_variable("bias", [NUM_LABELS], tf.constant_initializer(0.0))
    
            logit = tf.matmul(fc1, fc2_weights) + fc2_bias        
        return logit
    
    REGULARAZTION_RATE = 0.0001
    LEARNING_RATE_BASE = 0.8
    LEARNING_RATE_DECAY = 0.99
    TRAINING_STEPS = 30000
    MOVING_AVERAGE_DECAY = 0.99 #滑动平均, 减少过拟合
    BATCH_SIZE = 100
    MODEL_SAVE_PATH = "D:/kaggle/"
    MODEL_NAME = "model.ckpt"
    def train(mnist):
        x = tf.placeholder(tf.float32, [None, INPUT_NODE], name = 'x-input')
        y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name= 'y-input')
        regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
        y = inference(x, True, regularizer)
        global_step = tf.Variable(0, trainable=False)
    
    
        variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
        cross_entropy_mean = tf.reduce_mean(cross_entropy)
        loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
        learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
            staircase=True)
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
        with tf.control_dependencies([train_step, variables_averages_op]):
            train_op = tf.no_op(name='train')
    
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            tf.global_variables_initializer().run()
    
            for i in range(TRAINING_STEPS):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
                if i % 1000 == 0:
                    print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                    saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
    
    
    def main(argv=None):
        mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
        train(mnist)
    
    if __name__ == '__main__':
        tf.app.run()
    
    

    相关文章

      网友评论

          本文标题:CNN

          本文链接:https://www.haomeiwen.com/subject/ltfzkqtx.html