1. 线程同步
当多个线程同时运行时,线程的调度由操作系统决定,程序本身无法决定。因此,任何一个线程都有可能在任何指令处被操作系统暂停,然后在某个时间段后继续执行。
这个时候,有个单线程模型下不存在的问题就来了:如果多个线程同时读写共享变量,会出现数据不一致的问题。以计数器的例子看一下:
public class Main {
public static void main(String[] args) throws Exception {
var add = new AddThread();
var dec = new DecThread();
add.start();
dec.start();
add.join();
dec.join();
System.out.println(Counter.count);
}
}
class Counter {
public static int count = 0;
}
class AddThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
Counter.count += 1;
}
}
}
class DecThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
Counter.count -= 1;
}
}
}
上面的代码很简单,两个线程同时对一个int变量进行操作,一个加10000次,一个减10000次,最后结果应该是0,但是,每次运行,结果实际上都是不一样的。
这是因为对变量进行读取和写入时,结果要正确,必须保证是原子操作。原子操作是指不能被中断的一个或一系列操作。
对于语句:
n = n + 1;
看上去是一行语句,实际上对应了3条指令:
ILOAD
IADD
ISTORE
每个指令都是原子性的,但是n = n + 1
是非原子性的。
我们假设n
的值是100
,如果两个线程同时执行n = n + 1
,得到的结果很可能不是102
,而是101
,如下图:

如果线程1在执行ILOAD后被操作系统中断,此刻如果线程2被调度执行,它执行ILOAD后获取的值仍然是100,最终结果被两个线程的ISTORE写入后变成了101,而不是期待的102。这也是导致上面的计数器值不准的原因。
因此多线程模型下,要保证逻辑正确,对共享变量进行读写时,必须保证一组指令以原子方式执行:即某一个线程执行时,其他线程必须等待。
通过加锁和解锁的操作,就能保证3条指令总是在一个线程执行期间,不会有其他线程会进入此指令区间。即使在执行期线程被操作系统中断执行,其他线程也会因为无法获得锁导致无法进入此指令区间。只有执行线程将锁释放后,其他线程才有机会获得锁并执行。这种加锁和解锁之间的代码块我们称之为临界区(Critical Section),任何时候临界区最多只有一个线程能执行。
同步的本质就是给指定对象加锁,加锁后才能继续执行后续代码。
Java程序使用
synchronized
关键字对一个对象进行加锁:
synchronized(lock) {
n = n + 1;
}
synchronized
保证了代码块在任意时刻最多只有一个线程能执行。
上面计数器的例子可以添加synchronized
以确保准确:
public class Main {
public static void main(String[] args) throws Exception {
var add = new AddThread();
var dec = new DecThread();
add.start();
dec.start();
add.join();
dec.join();
System.out.println(Counter.count);
}
}
class Counter {
public static final Object lock = new Object();
public static int count = 0;
}
class AddThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
synchronized(Counter.lock) {
Counter.count += 1;
}
}
}
}
class DecThread extends Thread {
public void run() {
for (int i=0; i<10000; i++) {
synchronized(Counter.lock) {
Counter.count -= 1;
}
}
}
}
注意:加锁对象必须是同一个实例
JVM规范定义了几种原子操作:
- 基本类型(
long
和double
除外)赋值,例如:int n = m
; - 引用类型赋值,例如:
List<String> list = anotherList
。
long
和double
是64位数据,JVM没有明确规定64位赋值操作是不是一个原子操作,不过在x64平台的JVM是把long
和double
的赋值作为原子操作实现的。
2. 线程安全(thread-safe)
Java程序依靠synchronized
对线程进行同步,使用synchronized
的时候,锁住的是哪个对象非常重要。
让线程自己选择锁对象往往会使得代码逻辑混乱,也不利于封装。更好的方法是把synchronized
逻辑封装起来。例如,我们编写另一个计数器如下:
public class Counter {
private int count = 0;
public void add(int n) {
synchronized(this) {
count += n;
}
}
public void dec(int n) {
synchronized(this) {
count -= n;
}
}
public int get() {
return count;
}
}
这样一来,线程调用add()
、dec()
方法时,它不必关心同步逻辑,因为synchronized
代码块在add()
、dec()
方法内部。并且,我们注意到,synchronized
锁住的对象是this
,即当前实例,这又使得创建多个Counter
实例的时候,它们之间互不影响,可以并发执行:
var c1 = Counter();
var c2 = Counter();
// 对c1进行操作的线程:
new Thread(() -> {
c1.add();
}).start();
new Thread(() -> {
c1.dec();
}).start();
// 对c2进行操作的线程:
new Thread(() -> {
c2.add();
}).start();
new Thread(() -> {
c2.dec();
}).start();
现在,对于Counter
类,多线程可以正确调用。
如果一个类被设计为允许多线程正确访问,我们就说这个类就是“线程安全”的(thread-safe),上面的Counter类就是线程安全的。
还有一些不变类,例如String,Integer,LocalDate,它们的所有成员变量都是final,多线程同时访问时只能读不能写,这些不变类也是线程安全的。
没有特殊说明时,一个类默认是非线程安全的。
ArrayList是非线程安全的,Vector是线程安全的;
HashMap是非线程安全的,HashTable是线程安全的;
StringBuilder是非线程安全的,StringBuffer是线程安全的
线程安全保证了数据的正确性问题。但是,它带来了性能下降。因为synchronized代码块无法并发执行。此外,加锁和解锁需要消耗一定的时间,所以,synchronized会降低程序的执行效率。
参考:https://www.liaoxuefeng.com/wiki/1252599548343744/1306580844806178
网友评论