美文网首页Spark小白学习之路
Spark Streaming + Kafka +Hbase项目

Spark Streaming + Kafka +Hbase项目

作者: 北邮郭大宝 | 来源:发表于2018-11-20 10:29 被阅读125次

同学们在学习Spark Steaming的过程中,可能缺乏一个练手的项目,这次通过一个有实际背景的小项目,把学过的Spark Steaming、Hbase、Kafka都串起来。

1.项目介绍

1.1 项目流程

Spark Streaming读取kafka数据源发来的json格式的数据流,在批次内完成数据的清洗和过滤,再从HBase读取补充数据,拼接成新的json字符串写进下游kafka。

1.2 项目详解

  • 上游kafka topic为kafka_streaming_topic,内容是json格式的数据流,例如{"id":"001","name":"郭大宝","subject":"语文","score":"60"}
  • spark streaming 从kafka读取数据,完成数据清洗,并筛选出分数>=60分的数据
  • 通过id作为rowkey,批量从Hbase中查询学生信息数据,例如{"id":"001","name":"郭大宝","sex":"男","age":"26"}
  • 两个json完成拼接,并写入下游topic hello_topic

2.环境准备

2.1 组件安装

首先需要安装必要的大数据组件,安装的版本信息如下:
- Spark 2.1.2
- kafka 0.10.0.1
- HBase 1.2.0
- Zookeeper 3.4.5

2.2 HBase Table的创建

  • Hbase创建table student,列族名为cf
    create table 'student','cf'
    
  • 存入两条数据
    put 'student','001','cf:info','{"id":"001","name":"郭大宝","sex":"男","age":"26"}'
    put 'student','002','cf:info','{"id":"002","name":"郭星宇","sex":"男","age":"26"}'
    

2.3 Kafka Topic的创建

  • 创建kafka的两个topic,分别是kafka_streaming_topic、hello_topic
    kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_topic
    kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic hello_topic
    

3.Code

3.1 项目结构

streamingDemo_mulu.jpg

简单解释一下:

  • Output、Score、Output三个是Java Bean
  • MsgHandler完成对数据流的操作,包括json格式判断、必备字段检查、成绩>=60筛选、json to Bean、合并Bean等操作
  • ConfigManager读取配置参数
  • conf.properties 配置信息
  • StreamingDemo是程序主函数
  • HBaseUtils Hbase工具类
  • StreamingDemoTest 测试类

3.2 主函数

初始化spark,和一些配置信息的读取,通过KafkaUtils.createDirectStream读取kafka数据

完成如下几个操作
- 清洗和筛选数据,返回(id,ScoreBean)的RDD
- 构造id List集合,批量从Hbase查询结果,构造(id,studentJsonStr)的resMap集合,方便后续O(1)查询
- 遍历每条数据,从resMap查到结果,合并出新的Java Bean
- Java Bean to Json String,并写入到kafka

package com.bupt.spark.APP

import java.util.Properties
import com.alibaba.fastjson.serializer.SerializerFeature
import com.alibaba.fastjson.{JSON, JSONObject, TypeReference}
import com.bupt.Hbase.HBaseUtils
import com.bupt.spark.Bean.{Output, Score}
import com.bupt.spark.Handler.MsgHandler
import com.bupt.spark.Utils.ConfigManager
import org.apache.hadoop.hbase.util.Bytes
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}
import org.apache.spark.rdd.RDD
import org.slf4j.LoggerFactory
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.{Seconds, StreamingContext};

/**
  * Created by guoxingyu on 2018/11/18.
  */
object StreamingDemo {

  val LOG = LoggerFactory.getLogger(StreamingDemo.getClass)

  def main(args: Array[String]): Unit = {
    if (args.length != 1) {
      println("Usage: <properties>")
      LOG.error("properties file not exists")
      System.exit(1)
    }

    // init spark
    val configManager = new ConfigManager(args(0))
    val sparkConf = new SparkConf().setAppName(configManager.getProperty("steaming.appName")).setMaster("local[*]")
    val ssc = new StreamingContext(sparkConf,Seconds(configManager.getProperty("streaming.interval").toInt))

    // kafkaConsumerParams
    val kafkaConsumerParams = Map[String, Object](
      "bootstrap.servers" -> configManager.getProperty("bootstrap.servers"),
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" ->  configManager.getProperty("group.id"),
      "auto.offset.reset" -> configManager.getProperty("auto.offset.reset"),
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )

    // kafkaProducerParams
    val props = new Properties()
    props.setProperty("metadata.broker.list",configManager.getProperty("metadata.broker.list"))
    props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,configManager.getProperty("bootstrap.servers"))
    props.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer].getName)
    props.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer].getName)

    val inputTopics = Array(configManager.getProperty("input.topics"))
    val outputTopics = configManager.getProperty("output.topics")

    // create stream
    val stream = KafkaUtils.createDirectStream[String, String](
      ssc,
      PreferConsistent,
      Subscribe[String, String](inputTopics, kafkaConsumerParams)
    )

    // stream process
    stream.foreachRDD(rdd => {
      val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      if (!rdd.isEmpty()) {
        // clean and pick up msg
        val MsgHandler = new MsgHandler()
        val cleanStreamRDD: RDD[(String, Score)] = rdd.mapPartitions(iter => {
          iter.map(line => {
            if(MsgHandler.cleanAndPickUpMsg(line.value(),configManager)) {
              val scoreInfo = MsgHandler.getScoreBean(line.value()) // json to java bean
              if (scoreInfo != null) {
                (scoreInfo.getId,scoreInfo) // return (id,score bean)
              } else {
                null
              }
            } else {
              null
            }
          })
        }).filter(f => {
          f != null
        })

        // query from hbase, merge json, write into kafka
        cleanStreamRDD.foreachPartition(iter => {
          val lst = iter.toList
          if (!lst.isEmpty) {
            val rowkeys = lst.map(_._1).toSet.toList // get rowkey list

            if (!rowkeys.isEmpty) {
              val res = HBaseUtils.multipleGet(configManager.getProperty("hbase.tableName"),rowkeys).filter(f=> { // get jsonStr from hbase
                !f.isEmpty
              })
              val resMap = res.map(f=> {
                (Bytes.toString(f.getRow),Bytes.toString(f.getValue(Bytes.toBytes(configManager.getProperty("hbase.table.cf"))
                  ,Bytes.toBytes(configManager.getProperty("hbase.table.column")))))
              }).toMap // get result map

              lst.foreach(line => {
                if (resMap.nonEmpty && resMap.get(line._1) != null) {
                  val studentJsonStr = resMap.getOrElse(line._1,null)
                  val studentInfo = MsgHandler.getStudentBean(studentJsonStr)  // get student bean
                  val outputInfo: Output = MsgHandler.getOutputBean(line._2,studentInfo) // merge two bean

                  if (outputInfo != null) {
                    val outputJsonStr: String = JSON.toJSONString(outputInfo, SerializerFeature.WriteNullStringAsEmpty)
                    val producer = new KafkaProducer[String,String](props)
                    println(outputJsonStr)
                    producer.send(new ProducerRecord(outputTopics,"key",outputJsonStr))  // write into kafka
                    producer.close()
                  }
                }
              })
            }
          }
        })
      }
      stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
    })
    ssc.start()
    ssc.awaitTermination()
  }
}

4.结果验证

  • 开启kafka producer shell, 向kafka_streaming_topic写数据
streamingDemo_inputTopic.jpg
  • 开启kafka consumer shell, 消费hello_topic
streamingDemo_outputTopic.jpg

5.总结

通过这个小项目,希望大家可以掌握基本的Spark Streaming流处理操作,包括读写kafka,查询hbase,spark streaming Dstream操作。详细代码请参阅https://github.com/tygxy/StreamingDemo

相关文章

网友评论

    本文标题:Spark Streaming + Kafka +Hbase项目

    本文链接:https://www.haomeiwen.com/subject/lvjtqqtx.html