同学们在学习Spark Steaming的过程中,可能缺乏一个练手的项目,这次通过一个有实际背景的小项目,把学过的Spark Steaming、Hbase、Kafka都串起来。
1.项目介绍
1.1 项目流程
Spark Streaming读取kafka数据源发来的json格式的数据流,在批次内完成数据的清洗和过滤,再从HBase读取补充数据,拼接成新的json字符串写进下游kafka。
1.2 项目详解
- 上游kafka topic为kafka_streaming_topic,内容是json格式的数据流,例如{"id":"001","name":"郭大宝","subject":"语文","score":"60"}
- spark streaming 从kafka读取数据,完成数据清洗,并筛选出分数>=60分的数据
- 通过id作为rowkey,批量从Hbase中查询学生信息数据,例如{"id":"001","name":"郭大宝","sex":"男","age":"26"}
- 两个json完成拼接,并写入下游topic hello_topic
2.环境准备
2.1 组件安装
首先需要安装必要的大数据组件,安装的版本信息如下:
- Spark 2.1.2
- kafka 0.10.0.1
- HBase 1.2.0
- Zookeeper 3.4.5
2.2 HBase Table的创建
- Hbase创建table student,列族名为cf
create table 'student','cf'
- 存入两条数据
put 'student','001','cf:info','{"id":"001","name":"郭大宝","sex":"男","age":"26"}' put 'student','002','cf:info','{"id":"002","name":"郭星宇","sex":"男","age":"26"}'
2.3 Kafka Topic的创建
- 创建kafka的两个topic,分别是kafka_streaming_topic、hello_topic
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_topic kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic hello_topic
3.Code
3.1 项目结构
streamingDemo_mulu.jpg简单解释一下:
- Output、Score、Output三个是Java Bean
- MsgHandler完成对数据流的操作,包括json格式判断、必备字段检查、成绩>=60筛选、json to Bean、合并Bean等操作
- ConfigManager读取配置参数
- conf.properties 配置信息
- StreamingDemo是程序主函数
- HBaseUtils Hbase工具类
- StreamingDemoTest 测试类
3.2 主函数
初始化spark,和一些配置信息的读取,通过KafkaUtils.createDirectStream读取kafka数据
完成如下几个操作
- 清洗和筛选数据,返回(id,ScoreBean)的RDD
- 构造id List集合,批量从Hbase查询结果,构造(id,studentJsonStr)的resMap集合,方便后续O(1)查询
- 遍历每条数据,从resMap查到结果,合并出新的Java Bean
- Java Bean to Json String,并写入到kafka
package com.bupt.spark.APP
import java.util.Properties
import com.alibaba.fastjson.serializer.SerializerFeature
import com.alibaba.fastjson.{JSON, JSONObject, TypeReference}
import com.bupt.Hbase.HBaseUtils
import com.bupt.spark.Bean.{Output, Score}
import com.bupt.spark.Handler.MsgHandler
import com.bupt.spark.Utils.ConfigManager
import org.apache.hadoop.hbase.util.Bytes
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}
import org.apache.spark.rdd.RDD
import org.slf4j.LoggerFactory
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.{Seconds, StreamingContext};
/**
* Created by guoxingyu on 2018/11/18.
*/
object StreamingDemo {
val LOG = LoggerFactory.getLogger(StreamingDemo.getClass)
def main(args: Array[String]): Unit = {
if (args.length != 1) {
println("Usage: <properties>")
LOG.error("properties file not exists")
System.exit(1)
}
// init spark
val configManager = new ConfigManager(args(0))
val sparkConf = new SparkConf().setAppName(configManager.getProperty("steaming.appName")).setMaster("local[*]")
val ssc = new StreamingContext(sparkConf,Seconds(configManager.getProperty("streaming.interval").toInt))
// kafkaConsumerParams
val kafkaConsumerParams = Map[String, Object](
"bootstrap.servers" -> configManager.getProperty("bootstrap.servers"),
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> configManager.getProperty("group.id"),
"auto.offset.reset" -> configManager.getProperty("auto.offset.reset"),
"enable.auto.commit" -> (false: java.lang.Boolean)
)
// kafkaProducerParams
val props = new Properties()
props.setProperty("metadata.broker.list",configManager.getProperty("metadata.broker.list"))
props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,configManager.getProperty("bootstrap.servers"))
props.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer].getName)
props.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer].getName)
val inputTopics = Array(configManager.getProperty("input.topics"))
val outputTopics = configManager.getProperty("output.topics")
// create stream
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](inputTopics, kafkaConsumerParams)
)
// stream process
stream.foreachRDD(rdd => {
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
if (!rdd.isEmpty()) {
// clean and pick up msg
val MsgHandler = new MsgHandler()
val cleanStreamRDD: RDD[(String, Score)] = rdd.mapPartitions(iter => {
iter.map(line => {
if(MsgHandler.cleanAndPickUpMsg(line.value(),configManager)) {
val scoreInfo = MsgHandler.getScoreBean(line.value()) // json to java bean
if (scoreInfo != null) {
(scoreInfo.getId,scoreInfo) // return (id,score bean)
} else {
null
}
} else {
null
}
})
}).filter(f => {
f != null
})
// query from hbase, merge json, write into kafka
cleanStreamRDD.foreachPartition(iter => {
val lst = iter.toList
if (!lst.isEmpty) {
val rowkeys = lst.map(_._1).toSet.toList // get rowkey list
if (!rowkeys.isEmpty) {
val res = HBaseUtils.multipleGet(configManager.getProperty("hbase.tableName"),rowkeys).filter(f=> { // get jsonStr from hbase
!f.isEmpty
})
val resMap = res.map(f=> {
(Bytes.toString(f.getRow),Bytes.toString(f.getValue(Bytes.toBytes(configManager.getProperty("hbase.table.cf"))
,Bytes.toBytes(configManager.getProperty("hbase.table.column")))))
}).toMap // get result map
lst.foreach(line => {
if (resMap.nonEmpty && resMap.get(line._1) != null) {
val studentJsonStr = resMap.getOrElse(line._1,null)
val studentInfo = MsgHandler.getStudentBean(studentJsonStr) // get student bean
val outputInfo: Output = MsgHandler.getOutputBean(line._2,studentInfo) // merge two bean
if (outputInfo != null) {
val outputJsonStr: String = JSON.toJSONString(outputInfo, SerializerFeature.WriteNullStringAsEmpty)
val producer = new KafkaProducer[String,String](props)
println(outputJsonStr)
producer.send(new ProducerRecord(outputTopics,"key",outputJsonStr)) // write into kafka
producer.close()
}
}
})
}
}
})
}
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
})
ssc.start()
ssc.awaitTermination()
}
}
4.结果验证
- 开启kafka producer shell, 向kafka_streaming_topic写数据
- 开启kafka consumer shell, 消费hello_topic
5.总结
通过这个小项目,希望大家可以掌握基本的Spark Streaming流处理操作,包括读写kafka,查询hbase,spark streaming Dstream操作。详细代码请参阅https://github.com/tygxy/StreamingDemo
网友评论