前言
书接上回objc_msgSend流程分析,我们知道了消息发送首先会去cache_t
中缓存的方法列表中查找,其实这是方法快速查找
的过程,如果缓存中未找到,就会进入慢速查找
流程,那么慢速查找
的具体流程是怎么处理的呢?下面将给大家大致分析一下。
慢速查找入口
首先,必须找到入口,我们才能进入分析,那么入口在哪里呢?在objc_msgSend流程分析一文中,在CacheLookup
汇编过程中扔未找到SEL
的话,最终都会走到__objc_msgSend_uncached
,这个就是入口。
然后,在源码工程中全局搜索__objc_msgSend_uncached
,截图如下:
找到
STATIC_ENTRY
,这是汇编入口,我们只看arm64
情况下,汇编代码如下:
STATIC_ENTRY __objc_msgSend_uncached
UNWIND __objc_msgSend_uncached, FrameWithNoSaves
// THIS IS NOT A CALLABLE C FUNCTION
// Out-of-band p16 is the class to search
MethodTableLookup
TailCallFunctionPointer x17
END_ENTRY __objc_msgSend_uncached
就两句代码,MethodTableLookup
和 TailCallFunctionPointer
,先全局搜索TailCallFunctionPointer
,如下图:
只是读取一个地址值,看不出其它内容,那么我们只能再搜索
MethodTableLookup
,如下图:MethodTableLookup.png
同样只看
arm64
情况,找到定义.macro
,源码如下:
.macro MethodTableLookup
// push frame
SignLR
stp fp, lr, [sp, #-16]!
mov fp, sp
// save parameter registers: x0..x8, q0..q7
sub sp, sp, #(10*8 + 8*16)
stp q0, q1, [sp, #(0*16)]
stp q2, q3, [sp, #(2*16)]
stp q4, q5, [sp, #(4*16)]
stp q6, q7, [sp, #(6*16)]
stp x0, x1, [sp, #(8*16+0*8)]
stp x2, x3, [sp, #(8*16+2*8)]
stp x4, x5, [sp, #(8*16+4*8)]
stp x6, x7, [sp, #(8*16+6*8)]
str x8, [sp, #(8*16+8*8)]
// lookUpImpOrForward(obj, sel, cls, LOOKUP_INITIALIZE | LOOKUP_RESOLVER)
// receiver and selector already in x0 and x1
mov x2, x16
mov x3, #3
bl _lookUpImpOrForward
// IMP in x0
mov x17, x0
// restore registers and return
ldp q0, q1, [sp, #(0*16)]
ldp q2, q3, [sp, #(2*16)]
ldp q4, q5, [sp, #(4*16)]
ldp q6, q7, [sp, #(6*16)]
ldp x0, x1, [sp, #(8*16+0*8)]
ldp x2, x3, [sp, #(8*16+2*8)]
ldp x4, x5, [sp, #(8*16+4*8)]
ldp x6, x7, [sp, #(8*16+6*8)]
ldr x8, [sp, #(8*16+8*8)]
mov sp, fp
ldp fp, lr, [sp], #16
AuthenticateLR
.endmacro
我们观察,前后两大部分全是寄存器变量的处理,可以不管,中间有一句关键代码bl _lookUpImpOrForward
,再全局搜索_lookUpImpOrForward
,如下图:
只有这一个地方,怎么办?既然
汇编层
没有,我们再找上一层c/c++
,干掉下划线,全局搜索lookUpImpOrForward
,如下图:lookUpImpOrForward.png
objc-runtime-old.mm
不管,在objc-runtime-new.mm
中查到了方法的定义IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior)
,至此,我们终于到了,lookUpImpOrForward
就是慢速查找的入口函数!
上述查找的流程大致如下:
objc_msgSend
-->__objc_msgSend_uncached
-->MethodTableLookup
-->_lookUpImpOrForward
汇编层 -->lookUpImpOrForward
c/c++层
lookUpImpOrForward 流程
接下来我们重点分析一下lookUpImpOrForward
的流程处理,由于函数代码很多,按照以往惯例,我们分段分析。(省略部分注释。。。)
section1-- 准备工作
const IMP forward_imp = (IMP)_objc_msgForward_impcache;
IMP imp = nil;
Class curClass;
runtimeLock.assertUnlocked();
if (fastpath(behavior & LOOKUP_CACHE)) {
imp = cache_getImp(cls, sel);
if (imp) goto done_nolock;
}
runtimeLock.lock();
checkIsKnownClass(cls);
if (slowpath(!cls->isRealized())) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
if (slowpath((behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
}
runtimeLock.assertLocked();
- 一些变量,锁的声明
-
imp = cache_getImp(cls, sel);
再次的查找缓存,why?因为可能存在多线程的情况,可能在调用的同时,别的线程在缓存,所以再去读一次缓存,多给一次取缓存的机会。 -
checkIsKnownClass(cls);
字面意思-->检查是否是已知的类
,类里面有啥信息?当然是方法列表,属性列表,协议等,将这些信息加载到内存后,肯定是为了方便从缓存读取,更加方便,速度更快。 - 第一个if
slowpath(!cls->isRealized())
,跟进realizeClassMaybeSwiftAndLeaveLocked
-->realizeClassMaybeSwiftMaybeRelock
-->realizeClassWithoutSwift
-
realizeClassWithoutSwift
源码很长,只看关键代码
-
static Class realizeClassWithoutSwift(Class cls, Class previously)
{
// 省略部分代码。。。
cls->superclass = supercls;
cls->initClassIsa(metacls);
// 省略部分代码。。。
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
// Attach categories
methodizeClass(cls, previously);
return cls;
}
从cls->superclass = supercls;
和addSubclass(supercls, cls);
可以看出,既给子类cls
的父类superclass
赋值,又在父类supercls
中addSubclass
添加子类,就像是个双向链表,子类指向父类,父类又指向子类,这明显是在确立继承关系
。
- 再看第二个if
(behavior & LOOKUP_INITIALIZE) && !cls->isInitialized())
-->initializeAndLeaveLocked
-->initializeAndMaybeRelock
,大致意思是,若cls
未初始化,那么初始化,不做深究。
section2-- for无限循环
curClass = cls;
for (unsigned attempts = unreasonableClassCount();;) {
// curClass method list
Method meth = getMethodNoSuper_nolock(curClass, sel);
if (meth) {
imp = meth->imp;
goto done;
}
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
// Halt if there is a cycle in the superclass chain.
if (slowpath(--attempts == 0)) {
_objc_fatal("Memory corruption in class list.");
}
// Superclass cache.
imp = cache_getImp(curClass, sel);
if (slowpath(imp == forward_imp)) {
// Found a forward:: entry in a superclass.
// Stop searching, but don't cache yet; call method
// resolver for this class first.
break;
}
if (fastpath(imp)) {
// Found the method in a superclass. Cache it in this class.
goto done;
}
}
-
curClass = cls;
-->curClass
指向当前已经确定好继承链的cls
-
for (unsigned attempts = unreasonableClassCount();;)
是一种无限循环 -
Method meth = getMethodNoSuper_nolock(curClass, sel);
-->在当前类找
static method_t *
getMethodNoSuper_nolock(Class cls, SEL sel)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
// fixme nil cls?
// fixme nil sel?
// 遍历methodList --> 二分查找
auto const methods = cls->data()->methods();
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
// <rdar://problem/46904873> getMethodNoSuper_nolock is the hottest
// caller of search_method_list, inlining it turns
// getMethodNoSuper_nolock into a frame-less function and eliminates
// any store from this codepath.
method_t *m = search_method_list_inline(*mlists, sel);
if (m) return m;
}
return nil;
}
3.1. auto const methods = cls->data()->methods();
获取方法列表
3.2. for (auto mlists = methods.beginLists(), end = methods.endLists(); mlists != end; ++mlists)
从头到尾开始遍历
-
search_method_list_inline(*mlists, sel);
查找方法 -->findMethodInSortedMethodList
ALWAYS_INLINE static method_t *
findMethodInSortedMethodList(SEL key, const method_list_t *list)
{
ASSERT(list);
// first指向list首地址
const method_t * const first = &list->first;
// base先指向first
const method_t *base = first;
// probe表示list元素method_t *,就是指向方法的指针
const method_t *probe;
// keyValue表示当前要寻找方法的指针
uintptr_t keyValue = (uintptr_t)key;
// for循环的条件
uint32_t count;
// count指向方法列表最大个数值
for (count = list->count; count != 0; count >>= 1) {
// count右移1位 =count除2,那么probe先指向中间位置
probe = base + (count >> 1);
// probeValue-->当前中间位置的方法地址,因为method_t结构体中name是第一个成员,那么name的地址就是method_t的地址
uintptr_t probeValue = (uintptr_t)probe->name;
// 方法找到时
if (keyValue == probeValue) {
// keyValue == (uintptr_t)probe[-1].name--> probe前面的位置的那么也和keyValue相同
// 分类中的方法 存在和当前方法重名的情况 分类中方法列表在本类的方法列表之后
// 所以while循环的条件是-->直到前面的方法不重名时,即第一个时,就退出循环
// 扩展:多个分类的加载顺序是由分类文件编译的顺序决定的
while (probe > first && keyValue == (uintptr_t)probe[-1].name) {
probe--;
}
return (method_t *)probe;
}
// 为什么不判断小于呢?-->其实方法method_t在列表list中的地址是按照从小到大的顺序排列的,先插入的地址小于后插入的地址,所以小于的话,说明当前的probeValue对应的method_t在后面,所以继续循环,count继续除2,再一次对半分,让probe指针向前移动
// 如果keyValue 大于 probeValue,就往probe即中间位置的右边查找
if (keyValue > probeValue) {
// for循环的起始指针base移到probe后面的method_t的地址位置
base = probe + 1;
// count自减1,假如count初始值为8,第一次循环时,probe = base + (count>>1 --> 8>>1 = 4)是指向base+4的位置,
// 第二次循环count >>=1 --> 7>>1=3再probe = base + (count >>1 --> 3>>1 = 1) -->probe = base+1 的位置-->此时base指向下标5,probe就指向下标为6的位置 --> 其实就是在第一次对半分后,在后面那1/2部分的里面再对半分
count--;
}
}
return nil;
}
在当前类找,遍历methods的算法,这是二分查找法,请看每一步都写的注释。自我理解,不对的地方请指正!
如果找的到,那么goto done;
(见section5)
3.3. 当前类找不到的话,那么就找缓存,注意是父类的缓存
,why?注意下面的if
curClass = curClass->superclass
-->curClass
指向了当前cls的父类
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
4.imp = cache_getImp(curClass, sel);
--> 查找父类的缓存,跟缓存相关的处理都是汇编代码:
STATIC_ENTRY _cache_getImp
GetClassFromIsa_p16 p0
CacheLookup GETIMP, _cache_getImp
LGetImpMiss:
mov p0, #0
ret
END_ENTRY _cache_getImp
4.1.CacheLookup GETIMP
注意条件是GETIMP
,在缓存中查找时,查看CacheLookup
汇编源码,未找到的话,最终进入JumpMiss $0
,此时$0 == GETIMP
-->LGetImpMiss
-->mov p0, #0
- 接着判断
if (slowpath(imp == forward_imp))
,是则退出循环 - 如果没找到,继续循环,再进入父类的父类,直到nil,
imp = forward_imp
后退出循环,代码如下:
if (slowpath((curClass = curClass->superclass) == nil)) {
// No implementation found, and method resolver didn't help.
// Use forwarding.
imp = forward_imp;
break;
}
6.如果找到了if (fastpath(imp))
,去goto done
(见section5)。
section 4-- 最后给一次机会
if (slowpath(behavior & LOOKUP_RESOLVER)) {
behavior ^= LOOKUP_RESOLVER;
return resolveMethod_locked(inst, sel, cls, behavior);
}
- behavior初始值是
LOOKUP_INITIALIZE | LOOKUP_RESOLVER 详见汇编MethodTableLookup
,显然能满足判断条件,接着behavior ^= LOOKUP_RESOLVER
那么此时behavior = LOOKUP_INITIALIZE
- 接着
resolveMethod_locked(inst, sel, cls, behavior)
,这是动态方法决议
。
动态方法决议流程源码
static NEVER_INLINE IMP
resolveMethod_locked(id inst, SEL sel, Class cls, int behavior)
{
runtimeLock.assertLocked();
ASSERT(cls->isRealized());
runtimeLock.unlock();
if (! cls->isMetaClass()) {
// try [cls resolveInstanceMethod:sel]
resolveInstanceMethod(inst, sel, cls);
}
else {
// try [nonMetaClass resolveClassMethod:sel]
// and [cls resolveInstanceMethod:sel]
resolveClassMethod(inst, sel, cls);
if (!lookUpImpOrNil(inst, sel, cls)) {
resolveInstanceMethod(inst, sel, cls);
}
}
// chances are that calling the resolver have populated the cache
// so attempt using it
return lookUpImpOrForward(inst, sel, cls, behavior | LOOKUP_CACHE);
}
3.判断当前cls
是否元类cls->isMetaClass()
4.不是元类,则resolveInstanceMethod(inst, sel, cls)
5.是元类,则resolveClassMethod(inst, sel, cls);
-->!lookUpImpOrNil(inst, sel, cls)
-->未找到时resolveInstanceMethod(inst, sel, cls)
6.最后lookUpImpOrForward(inst, sel, cls, behavior | LOOKUP_CACHE)
,此时behavior = LOOKUP_INITIALIZE | LOOKUP_CACHE
- 再次进入
lookUpImpOrForward
,执行到if判断behavior & LOOKUP_RESOLVER
时,就不满足条件了,所以resolveMethod_locked只有一次机会
疑问:为什么元类的时候,判断完
resolveClassMethod
的实现后,还要再判断resolveInstanceMethod
?
带着上面的问题,我们先看看resolveInstanceMethod
核心代码如下
static void resolveInstanceMethod(id inst, SEL sel, Class cls)
{
// 省略部分ASSERT
SEL resolve_sel = @selector(resolveInstanceMethod:);
if (!lookUpImpOrNil(cls, resolve_sel, cls->ISA())) {
// Resolver not implemented.
return;
}
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(cls, resolve_sel, sel);
IMP imp = lookUpImpOrNil(inst, sel, cls);
if (resolved && PrintResolving) {
// 省略部分代码
}
}
-
bool resolved = msg(cls, resolve_sel, sel);
-->向当前类cls
中objc_msgSend
发送消息resolveInstanceMethod
-->当前类cls
是否实现了方法resolveInstanceMethod
-
IMP imp = lookUpImpOrNil(inst, sel, cls);
-->缓存查找resolveInstanceMethod
的结果,下一次消息发送的时候,就不用走到这一步了
再看看resolveClassMethod
,核心源码如下
static void resolveClassMethod(id inst, SEL sel, Class cls)
{
// 省略部分ASSERT
if (!lookUpImpOrNil(inst, @selector(resolveClassMethod:), cls)) {
// Resolver not implemented.
return;
}
Class nonmeta;
{
mutex_locker_t lock(runtimeLock);
nonmeta = getMaybeUnrealizedNonMetaClass(cls, inst);
// +initialize path should have realized nonmeta already
if (!nonmeta->isRealized()) {
_objc_fatal("nonmeta class %s (%p) unexpectedly not realized",
nonmeta->nameForLogging(), nonmeta);
}
}
BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;
bool resolved = msg(nonmeta, @selector(resolveClassMethod:), sel);
// Cache the result (good or bad) so the resolver doesn't fire next time.
// +resolveClassMethod adds to self->ISA() a.k.a. cls
IMP imp = lookUpImpOrNil(inst, sel, cls);
if (resolved && PrintResolving) {
// 省略部分代码。。。
}
}
-
!lookUpImpOrNil(inst, @selector(resolveClassMethod:), cls)
-->元类cls未实现resolveClassMethod
,直接return -
nonmeta
是未被系统实现的元类,那么先getMaybeUnrealizedNonMetaClass
初始化元类,暂不深究 - 同理,发送消息
bool resolved = msg(cls, @selector(resolveClassMethod:), sel);
-->向当前元类cls
中objc_msgSend
发送消息resolveClassMethod
-->当前远类cls
是否实现了方法resolveClassMethod
-
IMP imp = lookUpImpOrNil(inst, sel, cls);
-->缓存查找resolveClassMethod
的结果,下一次消息发送的时候,就不用走到这一步了
问题答案:
- 在isa走位图中,元类的继承链关系,元类的父类最终是根元类,根元类的父类是NSObject,所以元类未实现
resolveClassMethod
的话,向上找父类,最终找到了根类NSObject。- 然后类方法存储在元类中,但是类方法对于元类自身来说,其实也是实例方法,所以最终会走到NSObject的
resolveInstanceMethod
方法里。
section 5-- 找到后goto done
done:
log_and_fill_cache(cls, imp, sel, inst, curClass);
static void
log_and_fill_cache(Class cls, IMP imp, SEL sel, id receiver, Class implementer)
{
#if SUPPORT_MESSAGE_LOGGING
if (slowpath(objcMsgLogEnabled && implementer)) {
bool cacheIt = logMessageSend(implementer->isMetaClass(),
cls->nameForLogging(),
implementer->nameForLogging(),
sel);
if (!cacheIt) return;
}
#endif
cache_fill(cls, sel, imp, receiver);
}
cache_fill
再熟悉不过,缓存方法。至此,lookUpImpOrForward
流程结束!
总结
我们首先在objc_msgSend
流程中发现,如果在当前类的cache_t
中未找到方法实现,则会走到汇编__objc_msgSend_uncached
,这是慢速查找的开始,再跟进汇编搜索到慢速查找的入口函数lookUpImpOrForward
,然后大致分析了慢速查找的流程,大致是:
加载类信息(方法列表,属性列表,协议列表等)-->确认当前类的继承链-->for循环:先找自己(二分查找法)-->未找到则再找父类...根类->未找到进入动态方法决议
大致流程图如下:
慢速查找.jpg
网友评论