Problem declaration
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
Solution 1: force searching
Consider intern and extern loop to find two number summed as target, which comes up with the algothrim with complexity O(n*n).
Solution 2: hash
Consider using hash table. If the searching pointer points a number, two scenarios should be there:
- The value [target - number ] is not in the hash table, then we add the number into the table.
- The value [target - number] is in the hash table, then we get answer for the problem.
solution.h
#ifndef CLIONPROJECTS_SOLUTION_H
#define CLIONPROJECTS_SOLUTION_H
#include <vector>
#include <hash_map>
class Solution {
public:
//Constructor
Solution();
~Solution();
typedef std::vector<int> IntVector;
IntVector TwoSum(IntVector&, int);
private:
typedef __gnu_cxx::hash_map<int,int> IHashMap;
IHashMap map;
IntVector result;
};
#endif //CLIONPROJECTS_SOLUTION_H
solution.cpp
#include "solution.h"
Solution::Solution() = default;
Solution::~Solution() = default;
Solution::IntVector Solution::TwoSum(Solution::IntVector& nums, int target) {
for (int i = 0; i < nums.size(); i++) {
if (map.find(target - nums[i]) != map.end()) {
result.push_back(i);
result.push_back(map.find(target - nums[i]) -> second);
break;
} else {
map[nums[i]] = i;
}
}
return result;
}
main.cpp
#include <iostream>
#include "solution.h"
using std::cout;
using std::endl;
int main(int argc, char* argv[]) {
int nums_array[] = {2, 7, 11, 15};
int target = 9;
Solution::IntVector nums(nums_array, nums_array + 4);
auto * test = new Solution();
auto result = test -> TwoSum(nums, target);
//sort the indexes
std::sort(result.begin(), result.end());
cout << "[";
for (auto it = result.begin(); it != result.end() - 1; it++) {
cout << *it << ", ";
}
cout << *(result.end() - 1) << "]" << endl;
return 0;
}
The solution mentioned above is faster than previous one, which complexity is O(n). However, it needs extra memory space to store hash table.
Solution 3: double pointer
Consider that there are two pointer existing. For a sorted array(ascending for example), there are two numbers which point lo&hi pointing at respectively, if the sum of these two numbers larger than target, we increase lo by lo++, else make hi--. The algorithm complexity of sorting the array should be O(nlogn), and the complexity of finding sum of target is O(n). Though it is larger than the solution2, it's an in-place algorithm.
solution.cpp
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
vector<int> nums_cpy;
nums_cpy.assign(nums.begin(), nums.end());
std::sort(nums_cpy.begin(), nums_cpy.end());
auto lo = nums_cpy.begin();
auto hi = nums_cpy.end() - 1;
vector<int> result;
while (lo <= hi) {
if (*lo + *hi == target) {
for (int i = 0; i < nums.size(); i++) {
if (nums[i] == *lo) {
result.push_back(i);
} else if(nums[i] == *hi) {
result.push_back(i);
}
}
return result;
} else if (*lo + *hi < target) {
lo++;
} else {
hi--;
}
}
}
};
网友评论