参考文章
https://blog.csdn.net/fei33423/article/details/79132930
https://www.cnblogs.com/tiancai/p/9072813.html
正文
二叉查找树由于可能会非常的不均衡. 所以用2-3树. 采用上上浮的方法,顶多多两倍节点数.
红黑树一直是数据结构中的难点,大部分关于算法与数据结构的学习资料(包括《算法导论》)对于这部分的讲解都是上来就下定义,告诉我们红黑树这个性质那个性质,插入删除要注意1234点,但是基本没有讲为什么这样定义红色和黑色,让人理解起来十分费力。直到我看了下图这本书中关于红黑树部分的讲解,一时间豁然开朗,上网查了下这本书的作者Sedgewick,他是伟大的高德纳的学生!红黑树的发明者!
他在这本书中告诉了我们红黑树的根本模型:以二叉树的形式实现2-3树,通过红黑树与2-3树之间的一一对应,让我们对红黑树有了更直观的理解。
这本书里所讲的是左偏红黑树模型,理解了这个模型,再理解算法导论的完整红黑树模型就容易的多了。
Sedgewick是红黑树的发明者,1987年。因为平衡二叉树在插入和删除过程中需要判断插入的节点时2-节点还是3-节点等等一系列问题,实现起来代码量特别大,并且会增加额外开销,所以就提出了红黑树。
- Left-Leaning Red-Black Trees, Dagstuhl Workshop on Data Structures, Wadern, Germany, February, 2008,直接下载:Robert Sedgewick - Robert Sedgewick。
红黑树
红黑树的基本思想是用标准的二叉查找树(完全由2-节点构成)和一些额外的信息(替换3-节点)来表示2-3树。
2-3查找树
为了保证查找树的平衡性,我们需要一些灵活性,因此在这里我们允许树中的一个结点(节点)保存多个键。
2-节点(如下图):含有一个键(及值)和两条链接,左链接指向的2-3树中的键都小于该结点,右链接指向的2-3树中的键都大于该节点。
3-节点(如下图):含有两个键(及值)和三条链接,左链接指向的2-3树中的键都小于该节点,中链接指向的2-3树中的键都位于该节点的两个键之间,右链接指向的2-3树中的键都大于该节点。
(2-3指的是2叉-3叉的意思)
image image一颗完美平衡的2-3查找树中的所有空链接(即最后叶子节点的尾巴)到根结点的距离都是相同的。
查找
要判断一个键是否在树中,我们先将它和根结点中的键比较。如果它和其中的任何一个相等,查找命中。否则我们就根据比较的结果找到指向相应区间的链接,并在其指向的子树中递归地继续查找。如果这是个空链接,查找未命中。
插入
要在2-3树中插入一个新结点,我们可以和二叉查找树一样先进行一次未命中的查找,然后把新结点挂在树的底部。但这样的话树无法保持完美平衡性。我们使用2-3树的主要原因就在于它能够在插入之后继续保持平衡。
如果未命中的查找结束于一个2-结点,我们只要将要插入的键保存在其中即可, 把这个2-结点替换为一个3-结点。
如果未命中的查找结束于一个3-结点,事情就要麻烦一些。
1. 先考虑最简单的例子:
只有一个3-结点的树,向其插入一个新键。(如下图)
image这棵树唯一的结点中已经没有可插入的空间了。我们又不能把新键插在其空结点上(破坏了完美平衡)。为了将新键插入,我们先临时将新键存入该结点中,使之成为一个4-结点。创建一个4-结点很方便,因为很容易将它转换为一颗由3个2-结点组成的2-3树(如图所示),这棵树既是一颗含有3个结点的二叉查找树,同时也是一颗完美平衡的2-3树,其中所有空链接到根结点的距离都相等。
向一个父结点为2-结点的3-结点中插入新键
假设未命中的查找结束于一个3-结点,而它的父结点是一个2-结点。在这种情况下我们需要在维持树的完美平衡的前提下为新键腾出空间。
我们先像刚才一样构造一个临时的4-结点并将其分解,但此时我们不会为中键创建一个新结点,而是将其移动至原来的父结点中。(如图所示)
image这次转换也并不影响(完美平衡的)2-3树的主要性质。树仍然是有序的,因为中键被移动到父结点中去了,树仍然是完美平衡的,插入后所有的空链接到根结点的距离仍然相同。
向一个父结点为3-结点的3-结点中插入新键
假设未命中的查找结束于一个3-结点,而它的父结点是一个3-结点。(如下图)
我们再次和刚才一样构造一个临时的4-结点并分解它,然后将它的中键插入它的父结点中。但父结点也是一个3-结点,因此我们再用这个中键构造一个新的临时4-结点,然后在这个结点上进行相同的变换,即分解这个父结点并将它的中键插入到它的父结点中去。
我们就这样一直向上不断分解临时的4-结点并将中键插入更高的父结点</u>,直至遇到一个2-结点并将它替换为一个不需要继续分解的3-结点,或者是到达3-结点的根。
image总结:
先找插入节点,若节点有空位(即2型节点,可以加入一个,变成3型节点),则直接插入。如节点没空(即3-结点),则插入使其临时容纳这个元素,然后分裂此结点,把中间元素移到其父结点中。对父结点亦如此处理。(中键一直往上移,直到找到空位,在此过程中没有空位就先搞个临时的,再分裂。)
★2-3树插入算法的根本在于这些变换都是局部的:除了相关的节点和链接之外不必修改或者检查树的其他部分。每次变换中,变更的链接数量不会超过一个很小的常数。所有局部变换都不会影响整棵树的有序性和平衡性。
总结
和标准的二叉查找树由上向下生长不同,2-3树的生长是由下向上的。
image优点
2-3树在最坏情况下仍有较好的性能。每个操作中处理每个节点的时间都不会超过一个很小的常数,且这两个操作都只会访问一条路径上的节点,所以任何查找或者插入的成本都肯定不会超过对数级别</u>。
完美平衡的2-3树要平展的多。例如,含有10亿个节点的一颗2-3树的高度仅在19到30之间。我们最多只需要访问30个节点就能在10亿个键中进行任意查找和插入操作。
缺点
我们需要维护两种不同类型的节点,查找和插入操作的实现需要大量的代码,而且它们所产生的额外开销可能会使算法比标准的二叉查找树更慢。
平衡一棵树的初衷是为了消除最坏情况,但我们希望这种保障所需的代码能够越少越好。
红黑二叉查找树
【前言:本文所讨论的红黑树之目的在于使读者能更简单清晰地了解红黑树的构造,使读者能在纸上清晰快速地画出红黑树,而不是为了写出红黑树的实现代码。
若是要在代码级理解红黑树,则势必需要记住其复杂的插入和旋转的各种情况,我认为那只有助于增加大家对红黑树的恐惧,实际面试和工作中几乎不会遇到需要自己动手实现红黑树的情况(很多语言的标准库中就有红黑树的实现)。 若对于红黑树的C代码实现有兴趣的,可移步至July的博客。】
(理解红黑树一句话就够了:红黑树就是用红链接表示3-节点的2-3树。那么红黑树的插入、构造就可转化为2-3树的问题,即:在脑中用2-3树来操作,得到结果,再把结果中的3-节点转化为红链接即可。而2-3树的插入,前面已有详细图文,实际也很简单:有空则插,没空硬插,再分裂。 这样,我们就不用记那么复杂且让人头疼的红黑树插入旋转的各种情况了。只要清楚2-3树的插入方式即可。 下面图文详细演示。)
红黑树的本质:
红黑树是对2-3查找树的改进,它能用一种统一的方式完成所有变换。
替换3-节点
★红黑树背后的思想是用标准的二叉查找树(完全由2-节点构成)和一些额外的信息(替换3-节点)来表示2-3树。
我们将树中的链接分为两种类型:红链接将两个2-节点连接起来构成一个3-节点,黑链接则是2-3树中的普通链接。确切地说,我们将3-节点表示为由一条左斜
的红色链接相连的两个2-节点。
这种表示法的一个优点是,我们无需修改就可以直接使用标准二叉查找树的get()方法。对于任意的2-3树,只要对节点进行转换,我们都可以立即派生出一颗对应的二叉查找树。我们将用这种方式表示2-3树的二叉查找树称为红黑树。
image红黑树的另一种定义是满足下列条件的二叉查找树:
⑴红链接均为左链接。
⑵没有任何一个结点同时和两条红链接相连。
⑶该树是完美黑色平衡的,即任意空链接到根结点的路径上的黑链接数量相同。
如果我们将一颗红黑树中的红链接"放平" (如下图),那么所有的空链接到根结点的距离都将是相同的。如果我们将由红链接相连的结点合并,得到的就是一颗2-3树。
相反,如果将一颗2-3树中的3-结点画作由红色左链接相连的两个2-结点,那么不会存在能够和两条红链接相连的结点,且树必然是完美平衡的。
image无论我们用何种方式去定义它们,红黑树都既是二叉查找树,也是2-3树。
(2-3树的深度很小,平衡性好,效率高,但是其有两种不同的结点,实际代码实现比较复杂。而红黑树用红链接表示2-3树中另类的3-结点,统一了树中的结点类型,使代码实现简单化,又不破坏其高效性。)
颜色表示:
因为每个结点都只会有一条指向自己的链接(从它的父结点指向它),我们将链接的颜色保存在表示结点的Node数据类型的布尔变量color中(若指向它的链接是红色的,那么该变量为true,黑色则为false)。
当我们提到一个结点颜色时,我们指的是指向该结点的链接的颜色。
旋转
在我们实现的某些操作中可能会出现红色右链接或者两条连续的红链接,但在操作完成前这些情况都会被小心地旋转并修复。
(我们在这里不讨论旋转的几种情况,把红黑树看做2-3树,自然可以得到正确的旋转后结果)
插入
在插入时我们可以使用旋转操作帮助我们保证2-3树和红黑树之间的一一对应关系,因为旋转操作可以保持红黑树的两个重要性质:有序性和完美平衡性。
** 向2-结点中插入新键**
(向红黑树中插入操作时,想想2-3树的插入操作。红黑树与2-3树在本质上是相同的,只是它们对3结点的表示不同。
向一个只含有一个2-结点的2-3树中插入新键后,2-结点变为3-结点。我们再把这个3-结点转化为红结点即可)
image** 向一颗双键树(即一个3-结点)中插入新键**
(向红黑树中插入操作时,想想2-3树的插入操作。你把红黑树当做2-3树来处理插入,一切都变得简单了)
(向2-3树中的一个3-结点插入新键,这个3结点临时成为4-结点,然后分裂成3个2结点)
image★一颗红黑树的构造全过程
image平衡二叉树(AVL树)
定义:平衡二叉树(Balance Binary Tree)又称AVL树。它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1。
若将二叉树上结点的平衡因子BF(BalanceFactor)定义为该结点的左子树深度减去它的右子树深度,则平衡因子的绝对值大于1。
其旋转操作 用2-3树的分裂来类比想象。
总结
红黑树的定义
- 根节点是黑色的
- 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的
- 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点
- 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据
这里我们解释下第二点和第三点,其实看了上面的倆篇文章之后就会有大致的理解了。
为什么不能俩个红色节点挨住呢?首先要知道红黑节点的由来:每个结点都只会有一条指向自己的链接(从它的父结点指向它),我们将链接的颜色
保存在表示结点的Node数据类型的布尔变量color中(若指向它的链接是红色的,那么该变量为true,黑色则为false)。
首先要知道23树是永远平衡的,永远是一个“满二叉树”,至于为什么可以看上面倆篇文章中23树的插入过程。
23树中正常的2树中的节点都是黑节点,只有3树中节点才会有一个黑节点和一个红节点,红节点在红黑树中属于黑节点的左节点。
解释红黑树的第二点:任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的。
- 出现红节点的肯定是3树中,而3树中必有一个红节点和黑节点
- 3数黑节点永远是红节点的父节点,红节点永远是黑节点的左节点,所以肯定不会出现俩红色节点相邻的情况。
接着解释红黑树的第三点:每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点。
- 23树肯定是个高度平衡且是“满二叉树”,也就是任何一个节点到叶子节点的距离是相同的
- 2树中的节点是黑色的,3数中有一个黑和一个红节点,所以任何一个节点到叶子节点的路径中黑色节点数是相同的。
网友评论