0. 链接
1. 题目
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its minimum depth = 2.
2. 思路1: 递归
- 分析题意, 到叶子节点的距离才是深度, 而叶子节点是指左右子节点均为None的节点
- 时间复杂度
O(N)
- 空间复杂度
O(logN)
, 最坏情况O(N)
3. 代码
# coding:utf8
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def minDepth(self, root: TreeNode) -> int:
if root.left is None and root.right is None:
return 1
elif root.left is not None and root.right is not None:
return 1 + min(self.minDepth(root.left), self.minDepth(root.right))
elif root.left is not None and root.right is None:
return 1 + self.minDepth(root.left)
elif root.left is None and root.right is not None:
return 1 + self.minDepth(root.right)
else:
return 1
solution = Solution()
root1 = node = TreeNode(3)
node.left = TreeNode(9)
node.right = TreeNode(20)
node.right.left = TreeNode(15)
node.right.right = TreeNode(7)
print(solution.minDepth(root1))
root2 = node = TreeNode(1)
node.left = TreeNode(2)
print(solution.minDepth(root2))
输出结果
2
2
4. 结果
image.png5. 思路2: 利用队列+分层迭代
- 为了减少递归的时间和空间消耗,改为用队列+分层迭代来实现, 这样遇到非平衡的树,并非需要遍历完所有节点, 即可提前得知结果
- 二叉树的深度,取决于第一个到达叶子节点所在的层,所以分层遍历到遇到叶子节点,即获得了深度
- 时间复杂度
O(N)
- 空间复杂度
O(N)
- 理论的复杂度评级,看不出此法的优越性,因为它可以提前返回结果, 对于非平衡树来说, 比递归法好得多
6. 代码
# coding:utf8
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def minDepth(self, root: TreeNode) -> int:
if root is None:
return 0
queue = list()
queue.append(root)
level = 1
while len(queue) > 0:
size = len(queue)
for i in range(size):
node = queue.pop(0)
if node.left is None and node.right is None:
return level
if node.left is not None:
queue.append(node.left)
if node.right is not None:
queue.append(node.right)
level += 1
return level
solution = Solution()
root1 = node = TreeNode(3)
node.left = TreeNode(9)
node.right = TreeNode(20)
node.right.left = TreeNode(15)
node.right.right = TreeNode(7)
print(solution.minDepth(root1))
root2 = node = TreeNode(1)
node.left = TreeNode(2)
print(solution.minDepth(root2))
输出结果
2
2
网友评论