同步wx号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)
cs.AI 方向,今日共计12篇
【1】 Bridging Commonsense Reasoning and Probabilistic Planning via a Probabilistic Action Language
标题:通过概率动作语言将常识推理和概率规划连接起来
作者: Yi Wang, Joohyung Lee
备注:Paper presented at the 35th International Conference on Logic Programming (ICLP 2019), Las Cruces, New Mexico, USA, 20-25 September 2019, 16 pages. arXiv admin note: text overlap with arXiv:1904.00512
链接:https://arxiv.org/abs/1907.13482
【2】 An Implementation of a Non-monotonic Logic in an Embedded Computer for a Motor-glider
标题:电动滑翔机嵌入式计算机中非单调逻辑的实现
作者: José Luis Vilchis Medina, Andrei Doncescu
链接:https://arxiv.org/abs/1907.13305
【3】 Towards a Theory of Intentions for Human-Robot Collaboration
标题:走向人类-机器人合作的意向理论
作者: Rocio Gomez, Heather Riley
链接:https://arxiv.org/abs/1907.13275
【4】 What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models
标题:伯特不是什么:一套新的语言模型心理语言学诊断学的教训
作者: Allyson Ettinger
链接:https://arxiv.org/abs/1907.13528
【5】 Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space
标题:基于特征空间域的机器学习局部解释方法
作者: Tiago Botari, Andre C. P. L. F. de Carvalho
链接:https://arxiv.org/abs/1907.13525
【6】 MineRL: A Large-Scale Dataset of Minecraft Demonstrations
标题:MineRL:一个大型的“我的世界”演示数据集
作者: William H. Guss, Ruslan Salakhutdinov
备注:Accepted at IJCAI 2019, 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1904.10079
链接:https://arxiv.org/abs/1907.13440
【7】 Lifelong and Interactive Learning of Factual Knowledge in Dialogues
标题:对话中事实知识的终身互动学习
作者: Sahisnu Mazumder, Nianzu Ma
备注:Accepted in SIGDIAL 2019
链接:https://arxiv.org/abs/1907.13295
【8】 I-Keyboard: Fully Imaginary Keyboard on Touch Devices Empowered by Deep Neural Decoder
标题:i-Keyboard:通过深度神经解码器实现的触控设备上的全虚拟键盘
作者: Ue-Hwan Kim, Jong-Hwan Kim
链接:https://arxiv.org/abs/1907.13285
【9】 A Stabilized Feedback Episodic Memory (SF-EM) and Home Service Provision Framework for Robot and IoT Collaboration
标题:面向机器人和物联网协作的稳定反馈情景记忆(SF-EM)和家庭服务提供框架
作者: Ue-Hwan Kim, Jong-Hwan Kim
链接:https://arxiv.org/abs/1907.13274
【10】 Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training
标题:面向深度学习训练的多GPU并行化策略优化
作者: Saptadeep Pal, Puneet Gupta
链接:https://arxiv.org/abs/1907.13257
【11】 Deep Learning Training on the Edge with Low-Precision Posits
标题:基于低精度假设的边缘深度学习训练
作者: Hamed F. Langroudi, Dhireesha Kudithipudi
链接:https://arxiv.org/abs/1907.13216
【12】 Wasserstein Robust Reinforcement Learning
标题:Wasserstein鲁棒强化学习
作者: Mohammed Amin Abdullah, Jun Wang
链接:https://arxiv.org/abs/1907.13196
翻译:腾讯翻译君
网友评论