美文网首页
分布式自增ID生成算法 - 雪花算法(SnowFlake)

分布式自增ID生成算法 - 雪花算法(SnowFlake)

作者: Zal哥哥 | 来源:发表于2021-10-20 19:08 被阅读0次

    一、概述

    1、SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

    image.png

    ● 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0

    ● 41位,用来记录时间戳(毫秒)。
    ○ 41位可以表示2^{41}-1个数字,
    ○ 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^{41}-1,减1是因为可表示的数值范围是从0开始算的,而不是1。
    ○ 也就是说41位可以表示2^{41}-1个毫秒的值,转化成单位年则是(2^{41}-1) / (1000 * 60 * 60 * 24 * 365) = 69

    10位,用来记录工作机器id。
    ○ 可以部署在2^{10} = 1024个节点,包括 5位datacenterId 和 5位workerId
    ○ 5位(bit)可以表示的最大正整数是2^{5}-1 = 31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

    12位,序列号,用来记录同毫秒内产生的不同id。
    ○ 12位(bit)可以表示的最大正整数是2^{12}-1 = 4095,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

    由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

    SnowFlake可以保证:
    ● 所有生成的id按时间趋势递增
    ● 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

    二、使用

    网上的教程一般存在两个问题:
    1. 机器ID(5位)和数据中心ID(5位)配置没有解决,分布式部署的时候会使用相同的配置,任然有ID重复的风险。
    2. 使用的时候需要实例化对象,没有形成开箱即用的工具类。

    本文针对上面两个问题进行解决,笔者的解决方案是,workId使用服务器hostName生成,dataCenterId使用IP生成,这样可以最大限度防止10位机器码重复,但是由于两个ID都不能超过32,只能取余数,还是难免产生重复,但是实际使用中,hostName和IP的配置一般连续或相近,只要不是刚好相隔32位,就不会有问题,况且,hostName和IP同时相隔32的情况更加是几乎不可能的事,平时做的分布式部署,一般也不会超过10台容器。

    使用上面的方法可以零配置使用雪花算法,雪花算法10位机器码的设定理论上可以有1024个节点,生产上使用docker配置一般是一次编译,然后分布式部署到不同容器,不会有不同的配置,这里不知道其他公司是如何解决的,即使有方法使用一套配置,然后运行时根据不同容器读取不同的配置,但是给每个容器编配ID,1024个(大部分情况下没有这么多),似乎也不太可能,此问题留待日后解决后再行补充。

    具体生成 workId 和 dataCenterId 的方法如下:

        private static Long getWorkId(){
            try {
                String hostAddress = Inet4Address.getLocalHost().getHostAddress();
                int[] ints = StringUtils.toCodePoints(hostAddress);
                int sums = 0;
                for(int b : ints) {
                    sums += b;
                }
                return (long)(sums % 32);
            } catch (UnknownHostException e) {
                // 如果获取失败,则使用随机数备用
                return RandomUtils.nextLong(0,31);
            }
        }
    

    使用上面的方法需要增加Apache Commons lang3 的依赖,这也是此方法的缺点,但是在实际使用的时候,lang3这个类一般也是要引入的,非常非常好用,提高效率的利器 (注意:这里的commons-lang3必须是 3.8版本或者更高版本,否则低于这个版本会报没有toCodePoints(CharSequence str) 和 getHostName() 方法)。

    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-lang3</artifactId>
        <version>3.8</version>
    </dependency>
    

    最终的完整代码如下:

    package cn.com.xxx.xxx.util;
    
    import org.apache.commons.lang3.RandomUtils;
    import org.apache.commons.lang3.StringUtils;
    import org.apache.commons.lang3.SystemUtils;
    
    import java.net.Inet4Address;
    import java.net.UnknownHostException;
    import java.util.Date;
    
    /**
     * Twitter_Snowflake<br>
     * SnowFlake的结构如下(每部分用-分开):<br>
     * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
     * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
     * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 开始时间戳)
     * 得到的值),这里的的开始时间戳,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间戳,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
     * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
     * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
     * 加起来刚好64位,为一个Long型。<br>
     * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
     */
    public class SnowflakeIdUtils {
    
        /** 开始时间截 (2021-01-01) */
        private final long twepoch = 1609430400000L;
    
        /** 机器id所占的位数 */
        private final long workerIdBits = 5L;
    
        /** 数据标识id所占的位数 */
        private final long dataCenterIdBits = 5L;
    
        /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
        private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    
        /** 支持的最大数据标识id,结果是31 */
        private final long maxDataCenterId = -1L ^ (-1L << dataCenterIdBits);
    
        /** 序列在id中占的位数 */
        private final long sequenceBits = 12L;
    
        /** 机器ID向左移12位 */
        private final long workerIdShift = sequenceBits;
    
        /** 数据标识id向左移17位(12+5) */
        private final long dataCenterIdShift = sequenceBits + workerIdBits;
    
        /** 时间截向左移22位(5+5+12) */
        private final long timestampLeftShift = sequenceBits + workerIdBits + dataCenterIdBits;
    
        /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
        private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    
        /** 工作机器ID(0~31) */
        private long workerId;
    
        /** 数据中心ID(0~31) */
        private long dataCenterId;
    
        /** 毫秒内序列(0~4095) */
        private long sequence = 0L;
    
        /** 上次生成ID的时间截 */
        private long lastTimestamp = -1L;
    
        private static SnowflakeIdUtils idWorker;
    
        static {
            idWorker = new SnowflakeIdUtils(getWorkId(), getDataCenterId());
        }
    
        /**
         * 构造函数
         * @param workerId 工作ID (0~31)
         * @param dataCenterId 数据中心ID (0~31)
         */
        public SnowflakeIdUtils(long workerId, long dataCenterId) {
            if (workerId > maxWorkerId || workerId < 0) {
                throw new IllegalArgumentException(String.format("workerId can't be greater than %d or less than 0", maxWorkerId));
            }
            if (dataCenterId > maxDataCenterId || dataCenterId < 0) {
                throw new IllegalArgumentException(String.format("dataCenterId can't be greater than %d or less than 0", maxDataCenterId));
            }
            this.workerId = workerId;
            this.dataCenterId = dataCenterId;
        }
    
        /**
         * 获得下一个ID (该方法是线程安全的)
         * @return SnowflakeId
         */
        public synchronized long nextId() {
            long timestamp = timeGen();
    
            //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
            if (timestamp < lastTimestamp) {
                throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
            }
    
            //如果是同一时间生成的,则进行毫秒内序列
            if (lastTimestamp == timestamp) {
                sequence = (sequence + 1) & sequenceMask;
                //毫秒内序列溢出
                if (sequence == 0) {
                    //阻塞到下一个毫秒,获得新的时间戳
                    timestamp = tilNextMillis(lastTimestamp);
                }
            }
            //时间戳改变,毫秒内序列重置
            else {
                sequence = 0L;
            }
    
            //上次生成ID的时间截
            lastTimestamp = timestamp;
    
            //移位并通过或运算拼到一起组成64位的ID
            return ((timestamp - twepoch) << timestampLeftShift)
                    | (dataCenterId << dataCenterIdShift)
                    | (workerId << workerIdShift)
                    | sequence;
        }
    
        /**
         * 阻塞到下一个毫秒,直到获得新的时间戳
         * @param lastTimestamp 上次生成ID的时间截
         * @return 当前时间戳
         */
        protected long tilNextMillis(long lastTimestamp) {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp) {
                timestamp = timeGen();
            }
            return timestamp;
        }
    
        /**
         * 返回以毫秒为单位的当前时间
         * @return 当前时间(毫秒)
         */
        protected long timeGen() {
            return System.currentTimeMillis();
        }
    
        private static Long getWorkId(){
            try {
                String hostAddress = Inet4Address.getLocalHost().getHostAddress();
                int[] ints = StringUtils.toCodePoints(hostAddress);
                int sums = 0;
                for(int b : ints) {
                    sums += b;
                }
                return (long)(sums % 32);
            } catch (UnknownHostException e) {
                // 如果获取失败,则使用随机数备用
                return RandomUtils.nextLong(0,31);
            }
        }
    
        private static Long getDataCenterId(){
            int[] ints = StringUtils.toCodePoints(SystemUtils.getHostName());
            int sums = 0;
            for (int i: ints) {
                sums += i;
            }
            return (long)(sums % 32);
        }
    
        /**
         * 静态工具类
         *
         * @return
         */
        public static synchronized Long generateId(){
            long id = idWorker.nextId();
            return id;
        }
    
        /** 测试 */
        public static void main(String[] args) {
            System.out.println(System.currentTimeMillis());
            long startTime = System.nanoTime();
            for (int i = 0; i < 5; i++) {
                long id = SnowflakeIdUtils.generateId();
                System.out.println(id);
            }
            System.out.println((System.nanoTime()-startTime)/1000000+"ms");
    
            Date date = DateUtils.stringToDate("2021-01-01 00:00:00");
            System.out.println(date.getTime());
        }
    
    }
    
    

    相关文章

      网友评论

          本文标题:分布式自增ID生成算法 - 雪花算法(SnowFlake)

          本文链接:https://www.haomeiwen.com/subject/masnoltx.html