美文网首页
tensorflow 简单样例与自定义损失函数

tensorflow 简单样例与自定义损失函数

作者: 五长生 | 来源:发表于2018-01-22 12:21 被阅读1173次
    """
    一个简单的完整神经网络样例
    """
    
    import tensorflow as tf
    from numpy.random import RandomState
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    
    batch_size=8
    w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))
    w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
    x=tf.placeholder(tf.float32,shape=(None,2),name='x_input')
    y_=tf.placeholder(tf.float32,shape=(None,1),name='y_input')
    a=tf.matmul(x,w1)
    y=tf.matmul(a,w2)
    
    
    
    #定义损失函数和反向传播算法
    #自定义交叉熵
    cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
    train_step=tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
    #模拟生成训练集
    rdm=RandomState(1)
    dataset_size=128
    X=rdm.rand(dataset_size,2)
    
    Y=[[int(x1+x2<1)]for (x1,x2) in X]
    print(X.shape)
    print(Y)
    with tf.Session() as sess:
        init_op=tf.global_variables_initializer()
        sess.run(init_op)
        print(sess.run(w1))
        print(sess.run(w2))
    
        STEPS=5000
        for i in range(STEPS):
            
            start = ( i* batch_size)%dataset_size
            end= min(start+batch_size,dataset_size)
            #通过选取的样本训练神经网络或训练参数
            sess.run(train_step,feed_dict={x: X[start:end], y_ : Y[start:end]})
    
            if i % 1000 == 0:
                #计算每隔一段时间所有数据的交叉熵并输出
                total_cross_entropy=sess.run(cross_entropy,feed_dict={x:X,y_:Y})
                print("After %d training steps,cross entropy on all data is %g"%(i,total_cross_entropy))
        print(sess.run(w1))
        print(sess.run(w2))
    
    import tensorflow as tf
    from numpy.random import RandomState
    """
    自定义损失函数 
    """
    batch_size=8
    
    x=tf.placeholder(tf.float32,shape=(None,2),name='x_input')
    y_=tf.placeholder(tf.float32,shape=(None,1),name='y_input')#真值
    
    w1=tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
    y=tf.matmul(x,w1)#预测值
    
    loss_less=10
    loss_more=1
    loss=tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*loss_more,(y_-y)*loss_less))
    
    train_step=tf.train.AdamOptimizer(0.001).minimize(loss)
    rdm=RandomState(1)
    
    dataset_size=128
    X=rdm.rand(dataset_size,2)
    
    Y=[[x1+x2+rdm.rand()/10.0-0.05]for (x1,x2) in X]
    
    with tf.Session() as sess:
        init_op=tf.global_variables_initializer()
        sess.run(init_op)
        STEPS=5000
        for i in range(STEPS):
            start = (i * batch_size) % dataset_size
            end= min(start+batch_size,dataset_size)
            #通过选取的样本训练神经网络或训练参数
            sess.run(train_step,feed_dict={x: X[start:end], y_ : Y[start:end]})
    
        print(sess.run(w1))
    
    
    

    来自《tensorflow 实战Google深度学习框架》

    相关文章

      网友评论

          本文标题:tensorflow 简单样例与自定义损失函数

          本文链接:https://www.haomeiwen.com/subject/mdjlaxtx.html