题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2876
拉格朗日乘数,然后二分里面再弄个二分或牛顿法解方程。
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std ;
#define rep( i , x ) for ( int i = 0 ; i ++ < x ; )
const int maxn = 10100 ;
typedef long double ld ;
const int inf = 1000000000 ;
const ld esp = 0.0000000000000001 , INF = ld( inf ) ;
ld s[ maxn ] , k[ maxn ] , v[ maxn ] , e , x[ maxn ] ;
int n ;
inline ld sqr( ld ret ) {
return ret * ret ;
}
inline void cal( int i , ld mid ) {
ld l = v[ i ] , r = INF , md ;
while ( r - l > esp ) {
md = ( l + r ) / ld( 2 ) ;
if ( ( ld( 2 ) * mid * k[ i ] * ( md - v[ i ] ) * sqr( md ) + ld( 1 ) ) > 0 ) {
l = md ;
} else r = md ;
}
x[ i ] = l ;
}
inline bool check( ld mid ) {
ld sum = 0 ;
rep( i , n ) {
cal( i , mid ) ;
sum += ( k[ i ] * sqr( x[ i ] - v[ i ] ) * s[ i ] ) ;
}
return sum <= e ;
}
inline ld cal_t( ld lan ) {
check( lan ) ;
ld ans = 0 ;
rep( i , n ) ans += ( s[ i ] / x[ i ] ) ;
return ans ;
}
int main( ) {
double temp , a , b , c ;
scanf( "%d%lf" , &n , &temp ) ; e = temp ;
rep( i , n ) {
scanf( "%lf%lf%lf" , &a , &b , &c ) ;
s[ i ] = a , k[ i ] = b , v[ i ] = c ;
}
ld l = - INF, r = 0 , mid ;
while ( r - l > esp ) {
mid = ( l + r ) / ld( 2 ) ;
if ( check( mid ) ) l = mid ; else r = mid ;
}
printf( "%.8f\n" , double( cal_t( l ) ) ) ;
return 0 ;
}
网友评论