美文网首页机器学习
SVM+HOG 之牛奶盒检测(二、HOG)

SVM+HOG 之牛奶盒检测(二、HOG)

作者: SIENTIST | 来源:发表于2018-08-30 13:19 被阅读151次

方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。
它通过计算和统计图像局部区域的梯度方向直方图来构成特征。
Hog特征结合SVM分类器在图像识别中应用非常广泛,尤其是传统机器学习中比较成功的行人检测算法。当然现在都是深度学习的天下了。
核心思想: 图像中,局部目标的表象和形状能够被梯度或边缘的方向密度分布很好地描述。本质是梯度的统计信息,而梯度主要存在于边缘的地方。

具体流程: 图像(image)->滑动检测窗口(win)->图像块(block)->细胞单元(cell)
1、将图像灰度化;
2、采用Gamma校正对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰,得到一幅图像(image)

3、计算图像每个像素的梯度(包括大小和方向);主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。

4、选择滑动窗口(win)

5、在滑动窗口中选择一块(block)

6、在块中划分cell单元(cell)

7、统计每个cell的梯度直方图(不同梯度的个数),即可形成每个cell的descriptor描述子(描述向量);

8、将滑动窗口(win)内的所有块(block)的HOG特征descriptor串联起来就可以得到该滑动窗口的的HOG特征descriptor了。

9、如此按滑动步长一步步移动滑动窗口,直到图像的结束。


hdck.png 记在笔记本上的手写笔记.jpg

如何计算一个细胞(cell)中的梯度方向直方图呢?

统计图像梯度直方图.png

细胞单元中的每一个像素点都为某个基于方向的直方图通道投票。
投票是采取加权投票的方式,即每一票都是带有权值的,这个权值是根据该像素点的梯度幅度计算出来。可以采用幅值本身或者它的函数来表示这个权值,实际测试表明: 使用幅值来表示权值能获得最佳的效果,当然,也可以选择幅值的函数来表示,比如幅值的平方根、幅值的平方、幅值的截断形式等。细胞单元可以是矩形的,也可以是星形的。直方图通道是平均分布在0-180(无向)或0-360(有向)范围内。经研究发现,采用无向的梯度和9个直方图通道,能在行人检测试验中取得最佳的效果。而在这种情况下方向的范围划分为180/9=20度。

这是HOG特征descriptor的直观显示:
原图:


原图.jpg

HOG直观显示:


hogvisualize.jpg

将其放大可以看到那些cell中的descriptor


fd.jpg

这是直观显示HOG特征的代码

#include <opencv2/opencv.hpp>    
#include <cstdio>    
#include <cstdlib>    
#include <Windows.h>    
//#include "opencvtest.h"  

using namespace std;
using namespace cv;

// HOGDescriptor visual_imagealizer  
// adapted for arbitrary size of feature sets and training images  
Mat get_hogdescriptor_visual_image(Mat& origImg,
    vector<float>& descriptorValues,//hog特征向量  
    Size winSize,//图片窗口大小  
    Size cellSize,
    int scaleFactor,//缩放背景图像的比例  
    double viz_factor)//缩放hog特征的线长比例  
{
    Mat visual_image;//最后可视化的图像大小  
    resize(origImg, visual_image, Size(origImg.cols*scaleFactor, origImg.rows*scaleFactor));

    int gradientBinSize = 9;
    // dividing 180° into 9 bins, how large (in rad) is one bin?  
    float radRangeForOneBin = 3.14 / (float)gradientBinSize; //pi=3.14对应180°  

    // prepare data structure: 9 orientation / gradient strenghts for each cell  
    int cells_in_x_dir = winSize.width / cellSize.width;//x方向上的cell个数  
    int cells_in_y_dir = winSize.height / cellSize.height;//y方向上的cell个数  
    int totalnrofcells = cells_in_x_dir * cells_in_y_dir;//cell的总个数  
    //注意此处三维数组的定义格式  
    //int ***b;  
    //int a[2][3][4];  
    //int (*b)[3][4] = a;  
    //gradientStrengths[cells_in_y_dir][cells_in_x_dir][9]  
    float*** gradientStrengths = new float**[cells_in_y_dir];
    int** cellUpdateCounter = new int*[cells_in_y_dir];
    for (int y = 0; y<cells_in_y_dir; y++)
    {
        gradientStrengths[y] = new float*[cells_in_x_dir];
        cellUpdateCounter[y] = new int[cells_in_x_dir];
        for (int x = 0; x<cells_in_x_dir; x++)
        {
            gradientStrengths[y][x] = new float[gradientBinSize];
            cellUpdateCounter[y][x] = 0;

            for (int bin = 0; bin<gradientBinSize; bin++)
                gradientStrengths[y][x][bin] = 0.0;//把每个cell的9个bin对应的梯度强度都初始化为0  
        }
    }

    // nr of blocks = nr of cells - 1  
    // since there is a new block on each cell (overlapping blocks!) but the last one  
    //相当于blockstride = (8,8)  
    int blocks_in_x_dir = cells_in_x_dir - 1;
    int blocks_in_y_dir = cells_in_y_dir - 1;

    // compute gradient strengths per cell  
    int descriptorDataIdx = 0;
    int cellx = 0;
    int celly = 0;

    for (int blockx = 0; blockx<blocks_in_x_dir; blockx++)
    {
        for (int blocky = 0; blocky<blocks_in_y_dir; blocky++)
        {
            // 4 cells per block ...  
            for (int cellNr = 0; cellNr<4; cellNr++)
            {
                // compute corresponding cell nr  
                int cellx = blockx;
                int celly = blocky;
                if (cellNr == 1) celly++;
                if (cellNr == 2) cellx++;
                if (cellNr == 3)
                {
                    cellx++;
                    celly++;
                }

                for (int bin = 0; bin<gradientBinSize; bin++)
                {
                    float gradientStrength = descriptorValues[descriptorDataIdx];
                    descriptorDataIdx++;

                    gradientStrengths[celly][cellx][bin] += gradientStrength;//因为C是按行存储  

                } // for (all bins)  


                // note: overlapping blocks lead to multiple updates of this sum!  
                // we therefore keep track how often a cell was updated,  
                // to compute average gradient strengths  
                cellUpdateCounter[celly][cellx]++;//由于block之间有重叠,所以要记录哪些cell被多次计算了  

            } // for (all cells)  


        } // for (all block x pos)  
    } // for (all block y pos)  


    // compute average gradient strengths  
    for (int celly = 0; celly<cells_in_y_dir; celly++)
    {
        for (int cellx = 0; cellx<cells_in_x_dir; cellx++)
        {

            float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];

            // compute average gradient strenghts for each gradient bin direction  
            for (int bin = 0; bin<gradientBinSize; bin++)
            {
                gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
            }
        }
    }


    cout << "winSize = " << winSize << endl;
    cout << "cellSize = " << cellSize << endl;
    cout << "blockSize = " << cellSize * 2 << endl;
    cout << "blockNum = " << blocks_in_x_dir << "×" << blocks_in_y_dir << endl;
    cout << "descriptorDataIdx = " << descriptorDataIdx << endl;

    // draw cells  
    for (int celly = 0; celly<cells_in_y_dir; celly++)
    {
        for (int cellx = 0; cellx<cells_in_x_dir; cellx++)
        {
            int drawX = cellx * cellSize.width;
            int drawY = celly * cellSize.height;

            int mx = drawX + cellSize.width / 2;
            int my = drawY + cellSize.height / 2;

            rectangle(visual_image,
                Point(drawX*scaleFactor, drawY*scaleFactor),
                Point((drawX + cellSize.width)*scaleFactor,
                (drawY + cellSize.height)*scaleFactor),
                CV_RGB(0, 0, 0),//cell框线的颜色  
                1);

            // draw in each cell all 9 gradient strengths  
            for (int bin = 0; bin<gradientBinSize; bin++)
            {
                float currentGradStrength = gradientStrengths[celly][cellx][bin];

                // no line to draw?  
                if (currentGradStrength == 0)
                    continue;

                float currRad = bin * radRangeForOneBin + radRangeForOneBin / 2;//取每个bin里的中间值,如10°,30°,...,170°.  

                float dirVecX = cos(currRad);
                float dirVecY = sin(currRad);
                float maxVecLen = cellSize.width / 2;
                float scale = viz_factor; // just a visual_imagealization scale,  
                // to see the lines better  

                // compute line coordinates  
                float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
                float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
                float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
                float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;

                // draw gradient visual_imagealization  
                line(visual_image,
                    Point(x1*scaleFactor, y1*scaleFactor),
                    Point(x2*scaleFactor, y2*scaleFactor),
                    CV_RGB(255, 255, 255),//HOG可视化的cell的颜色  
                    1);

            } // for (all bins)  

        } // for (cellx)  
    } // for (celly)  
 
    for (int y = 0; y<cells_in_y_dir; y++)
    {
        for (int x = 0; x<cells_in_x_dir; x++)
        {
            delete[] gradientStrengths[y][x];
        }
        delete[] gradientStrengths[y];
        delete[] cellUpdateCounter[y];
    }
    delete[] gradientStrengths;
    delete[] cellUpdateCounter;

    return visual_image;//返回最终的HOG可视化图像  

}


int main()
{

    HOGDescriptor hog;//使用的是默认的hog参数  

    Mat src = imread("1.jpg");//注意这里边的双斜杠
    int src_width = src.cols;
    int src_height = src.rows;
    int width = src_width;
    int height = src_height;
    hog.winSize = Size(width, height);
    vector<float> des;//HOG特征向量  

    Mat dst;
    resize(src, dst, Size(width, height));//规范图像尺寸  
    imshow("src", src);
    hog.compute(dst, des);//计算hog特征  
    Mat background = Mat::zeros(Size(width, height), CV_8UC1);//设置黑色背景图,因为要用白色绘制hog特征  

    Mat d = get_hogdescriptor_visual_image(background, des, hog.winSize, hog.cellSize, 3, 2.5);
    imshow("dst", d);
    imwrite("hogvisualize.jpg", d);
    waitKey();

    return 0;
}

相关文章

  • SVM+HOG 之牛奶盒检测(二、HOG)

    方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图...

  • SVM+HOG 之牛奶盒检测(一、SVM)

    这篇主要讲SVM理论。SVM即为Support Vector Machine,支持向量机,是一种很有意思的算法,它...

  • SVM+HOG 之牛奶盒检测(三、C++实战操作)

    由于运用的是SVM二分类,因此需要准备2批数据,一批正样本数据,一批负样本数据。这样才能让SVM进行学习,知道哪些...

  • 四种行人检测方法对比的matlab源码(附INRIA数据库及GU

    这篇主要是关于行人检测的matlab程序,说明如下。四种算法分别为svm+hog,svm+hog+lbp,adab...

  • 行人检测

    opencv︱opencv中实现行人检测:HOG+SVM(二) - 素质云笔记/Recorder... - CSDN博客

  • 常见的特征点算法(检测+描述子)

    HOG(描述子) 参考博客HOG+SVM在行人检测中获得巨大成功HOG的主要思想是图片的局部特征可以被梯度或边缘的...

  • HOG学习

    HOG是适用于人体检测的目标检测算法。首先附上论文链接Histograms of Oriented Gradien...

  • DPM Deformable Parts Model

    DPM原理 DPM是一个非常成功的目标检测算法。DPM可以看作是HOG的拓展。大体思路与HOG一致。先计算梯度方向...

  • 牛奶盒

    牛奶盒 春节,海南岛正是22°早春的艳阳天。 小区的住户,平日里大多是内地过来养...

  • 牛奶盒

    “宇,你桌子上的牛奶喝完了吗?没喝完快喝掉,免得洒了,喝完了就丢垃圾桶里。”老师对宇说。 “牛奶喝完了。”宇回答。...

网友评论

    本文标题:SVM+HOG 之牛奶盒检测(二、HOG)

    本文链接:https://www.haomeiwen.com/subject/mejrwftx.html