美文网首页
Android异步消息机制

Android异步消息机制

作者: 杨充211 | 来源:发表于2019-05-17 09:37 被阅读0次

    目录介绍

    • 1.Handler的常见的使用方式
    • 2.如何在子线程中定义Handler
    • 3.主线程如何自动调用Looper.prepare()
    • 4.Looper.prepare()方法源码分析
    • 5.Looper中用什么存储消息
    • 6.Handler发送消息如何运作
    • 7.Looper.loop()方法源码分析
    • 8.runOnUiThread如何实现子线程更新UI
    • 9.Handler的post方法和view的post方法
    • 10.主线程中Looper的轮询死循环为何没阻塞主线程
    • 11.得出部分结论

    给自己相个亲

    好消息

    • 01.基础组件(9篇)
    • 02.IPC机制(0篇)
    • 03.View原理(7篇)
    • 04.动画机制(2篇)
    • 05.View事件(9篇)
    • 06.消息机制(6篇)
    • 07.多媒体(9篇)
    • 08.View事件(4篇)
    • 09.多线程(4篇)
    • 10.Window(11篇)
    • 11.WebView(4篇)
    • 12.网络相关(7篇)
    • 13.注解(14篇)
    • 14.音视频(13篇)
    • 15.优化相关(8篇)
    • 16.设计模式(4篇)
    • 20.零碎笔记(12篇)
    • 21.kotlin学习(1篇)
    • 22.源码分析(11篇)
    • 23.架构技术(13篇)
    • 25.RecyclerView(21篇)
    • 博客笔记大汇总【16年3月到至今】,包括Java基础及深入知识点,Android技术博客,Python学习笔记等等,还包括平时开发中遇到的bug汇总,当然也在工作之余收集了大量的面试题,长期更新维护并且修正,持续完善……开源的文件是markdown格式的!同时也开源了生活博客,从12年起,积累共计N篇[近100万字,陆续搬到网上],转载请注明出处,谢谢!
    • 链接地址:https://github.com/yangchong211/YCBlogs
    • 如果觉得好,可以star一下,谢谢!当然也欢迎提出建议,万事起于忽微,量变引起质变!

    1.Handler的常见的使用方式

    • handler机制大家都比较熟悉呢。在子线程中发送消息,主线程接受到消息并且处理逻辑。如下所示
      • 一般handler的使用方式都是在主线程中定义Handler,然后在子线程中调用mHandler.sendXx()方法,这里有一个疑问可以在子线程中定义Handler吗?
      public class MainActivity extends AppCompatActivity {
      
          private TextView tv ;
      
          /**
           * 在主线程中定义Handler,并实现对应的handleMessage方法
           */
          public static Handler mHandler = new Handler() {
              @Override
              public void handleMessage(Message msg) {
                  if (msg.what == 101) {
                      Log.i("MainActivity", "接收到handler消息...");
                  }
              }
          };
      
          @Override
          protected void onCreate(Bundle savedInstanceState) {
              super.onCreate(savedInstanceState);
              setContentView(R.layout.activity_main);
              tv = (TextView) findViewById(R.id.tv);
              tv.setOnClickListener(new View.OnClickListener() {
                  @Override
                  public void onClick(View v) {
                      new Thread() {
                          @Override
                          public void run() {
                              // 在子线程中发送异步消息
                              mHandler.sendEmptyMessage(1);
                          }
                      }.start();
                  }
              });
          }
      }
      

    2.如何在子线程中定义Handler

    • 直接在子线程中创建handler,看看会出现什么情况?
      • 运行后可以得出在子线程中定义Handler对象出错,难道Handler对象的定义或者是初始化只能在主线程中?其实不是这样的,错误信息中提示的已经很明显了,在初始化Handler对象之前需要调用Looper.prepare()方法
      tv.setOnClickListener(new View.OnClickListener() {
          @Override
          public void onClick(View v) {
              new Thread() {
                  @Override
                  public void run() {
                      Handler mHandler = new Handler() {
                          @Override
                          public void handleMessage(Message msg) {
                              if (msg.what == 1) {
                                  Log.i(TAG, "在子线程中定义Handler,接收并处理消息");
                              }
                          }
                      };
                  }
              }.start();
          }
      });
      
      • 如何正确运行。在这里问一个问题,在子线程中可以吐司吗?答案是可以的,只不过又条件,详细可以看这篇文章02.Toast源码深度分析
        • 这样程序已经不会报错,那么这说明初始化Handler对象的时候我们是需要调用Looper.prepare()的,那么主线程中为什么可以直接初始化Handler呢?难道是主线程创建handler对象的时候,会自动调用Looper.prepare()方法的吗?
      tv.setOnClickListener(new View.OnClickListener() {
          @Override
          public void onClick(View v) {
              new Thread() {
                  @Override
                  public void run() {
                      Looper.prepare();
                      Handler mHandler = new Handler() {
                          @Override
                          public void handleMessage(Message msg) {
                              if (msg.what == 1) {
                                  Log.i(TAG, "在子线程中定义Handler,接收并处理消息");
                              }
                          }
                      };
                      Looper.loop();
                  }
              }.start();
          }
      });
      

    3.主线程如何自动调用Looper.prepare()

    • 首先直接可以看在App初始化的时候会执行ActivityThread的main方法中的代码,如下所示
      • 可以看到Looper.prepare()方法在这里调用,所以在主线程中可以直接初始化Handler了。
      public static void main(String[] args) {
          //省略部分代码
          Looper.prepareMainLooper();
          ActivityThread thread = new ActivityThread();
          thread.attach(false);
          if (sMainThreadHandler == null) {
              sMainThreadHandler = thread.getHandler();
          }
          if (false) {
              Looper.myLooper().setMessageLogging(new
                      LogPrinter(Log.DEBUG, "ActivityThread"));
          }
          Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
          Looper.loop();
          throw new RuntimeException("Main thread loop unexpectedly exited");
      }
      
    • 并且可以看到还调用了:Looper.loop()方法,可以知道一个Handler的标准写法其实是这样的
      Looper.prepare();
      Handler mHandler = new Handler() {
         @Override
         public void handleMessage(Message msg) {
            if (msg.what == 101) {
               Log.i(TAG, "在子线程中定义Handler,并接收到消息");
             }
         }
      };
      Looper.loop();
      

    4.Looper.prepare()方法源码分析

    • 源码如下所示
      • 可以看到Looper中有一个ThreadLocal成员变量,熟悉JDK的同学应该知道,当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。
      public static void prepare() {
          prepare(true);
      }
      
      private static void prepare(boolean quitAllowed) {
          if (sThreadLocal.get() != null) {
              throw new RuntimeException("Only one Looper may be created per thread");
          }
          sThreadLocal.set(new Looper(quitAllowed));
      }
      
    • 思考:Looper.prepare()能否调用两次或者多次
      • 如果运行,则会报错,并提示prepare中的Excetion信息。由此可以得出在每个线程中Looper.prepare()能且只能调用一次
      //这里Looper.prepare()方法调用了两次
      Looper.prepare();
      Looper.prepare();
      Handler mHandler = new Handler() {
         @Override
         public void handleMessage(Message msg) {
             if (msg.what == 1) {
                Log.i(TAG, "在子线程中定义Handler,并接收到消息。。。");
             }
         }
      };
      Looper.loop();
      

    5.Looper中用什么存储消息

    • 先看一下下面得源代码
      • 看Looper对象的构造方法,可以看到在其构造方法中初始化了一个MessageQueue对象。MessageQueue也称之为消息队列,特点是先进先出,底层实现是单链表数据结构
      private static void prepare(boolean quitAllowed) {
          if (sThreadLocal.get() != null) {
              throw new RuntimeException("Only one Looper may be created per thread");
          }
          sThreadLocal.set(new Looper(quitAllowed));
      }
      
      private Looper(boolean quitAllowed) {
          mQueue = new MessageQueue(quitAllowed);
          mThread = Thread.currentThread();
      }
      
    • 得出结论
      • Looper.prepare()方法初始话了一个Looper对象并关联在一个MessageQueue对象,并且一个线程中只有一个Looper对象,只有一个MessageQueue对象。

    6.Handler发送消息如何运作

    • 首先看看构造方法
      • 可以看出在Handler的构造方法中,主要初始化了一下变量,并判断Handler对象的初始化不应再内部类,静态类,匿名类中,并且保存了当前线程中的Looper对象。
      public Handler(Callback callback, boolean async) {
          if (FIND_POTENTIAL_LEAKS) {
              final Class<? extends Handler> klass = getClass();
              if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                      (klass.getModifiers() & Modifier.STATIC) == 0) {
                  Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                      klass.getCanonicalName());
              }
          }
      
          mLooper = Looper.myLooper();
          if (mLooper == null) {
              throw new RuntimeException(
                  "Can't create handler inside thread that has not called Looper.prepare()");
          }
          mQueue = mLooper.mQueue;
          mCallback = callback;
          mAsynchronous = async;
      }
      
    • 看handler.sendMessage(msg)方法
      • 关于下面得源码,是步步追踪,看enqueueMessage这个方法,原来msg.target就是Handler对象本身;而这里的queue对象就是我们的Handler内部维护的Looper对象关联的MessageQueue对象。
      handler.sendMessage(message);
      
      //追踪到这一步
      public final boolean sendMessage(Message msg){
          return sendMessageDelayed(msg, 0);
      }
      
      
      public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
          MessageQueue queue = mQueue;
          if (queue == null) {
              RuntimeException e = new RuntimeException(
                      this + " sendMessageAtTime() called with no mQueue");
              Log.w("Looper", e.getMessage(), e);
              return false;
          }
          return enqueueMessage(queue, msg, uptimeMillis);
      }
      
      private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
          msg.target = this;
          if (mAsynchronous) {
              msg.setAsynchronous(true);
          }
          return queue.enqueueMessage(msg, uptimeMillis);
      }
      
    • 看MessageQueue对象的enqueueMessage方法
      • 看到这里MessageQueue并没有使用列表将所有的Message保存起来,而是使用Message.next保存下一个Message,从而按照时间将所有的Message排序
      boolean enqueueMessage(Message msg, long when) {
          if (msg.target == null) {
              throw new IllegalArgumentException("Message must have a target.");
          }
          if (msg.isInUse()) {
              throw new IllegalStateException(msg + " This message is already in use.");
          }
      
          synchronized (this) {
              if (mQuitting) {
                  IllegalStateException e = new IllegalStateException(
                          msg.target + " sending message to a Handler on a dead thread");
                  Log.w(TAG, e.getMessage(), e);
                  msg.recycle();
                  return false;
              }
      
              msg.markInUse();
              msg.when = when;
              Message p = mMessages;
              boolean needWake;
              if (p == null || when == 0 || when < p.when) {
                  // New head, wake up the event queue if blocked.
                  msg.next = p;
                  mMessages = msg;
                  needWake = mBlocked;
              } else {
                  // Inserted within the middle of the queue.  Usually we don't have to wake
                  // up the event queue unless there is a barrier at the head of the queue
                  // and the message is the earliest asynchronous message in the queue.
                  needWake = mBlocked && p.target == null && msg.isAsynchronous();
                  Message prev;
                  for (;;) {
                      prev = p;
                      p = p.next;
                      if (p == null || when < p.when) {
                          break;
                      }
                      if (needWake && p.isAsynchronous()) {
                          needWake = false;
                      }
                  }
                  msg.next = p; // invariant: p == prev.next
                  prev.next = msg;
              }
      
              // We can assume mPtr != 0 because mQuitting is false.
              if (needWake) {
                  nativeWake(mPtr);
              }
          }
          return true;
      }
      

    7.Looper.loop()方法源码分析

    • 看看里面得源码,如下所示
      • 看到Looper.loop()方法里起了一个死循环,不断的判断MessageQueue中的消息是否为空,如果为空则直接return掉,然后执行queue.next()方法
      public static void loop() {
          final Looper me = myLooper();
          if (me == null) {
              throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
          }
          final MessageQueue queue = me.mQueue;
          Binder.clearCallingIdentity();
          final long ident = Binder.clearCallingIdentity();
          for (;;) {
              Message msg = queue.next(); // might block
              if (msg == null) {
                  // No message indicates that the message queue is quitting.
                  return;
              }
              // This must be in a local variable, in case a UI event sets the logger
              final Printer logging = me.mLogging;
              if (logging != null) {
                  logging.println(">>>>> Dispatching to " + msg.target + " " +
                          msg.callback + ": " + msg.what);
              }
              final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
              final long traceTag = me.mTraceTag;
              if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                  Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
              }
              final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
              final long end;
              try {
                  msg.target.dispatchMessage(msg);
                  end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
              } finally {
                  if (traceTag != 0) {
                      Trace.traceEnd(traceTag);
                  }
              }
              if (slowDispatchThresholdMs > 0) {
                  final long time = end - start;
                  if (time > slowDispatchThresholdMs) {
                      Slog.w(TAG, "Dispatch took " + time + "ms on "
                              + Thread.currentThread().getName() + ", h=" +
                              msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                  }
              }
              if (logging != null) {
                  logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
              }
              // Make sure that during the course of dispatching the
              // identity of the thread wasn't corrupted.
              final long newIdent = Binder.clearCallingIdentity();
              if (ident != newIdent) {
                  Log.wtf(TAG, "Thread identity changed from 0x"
                          + Long.toHexString(ident) + " to 0x"
                          + Long.toHexString(newIdent) + " while dispatching to "
                          + msg.target.getClass().getName() + " "
                          + msg.callback + " what=" + msg.what);
              }
              msg.recycleUnchecked();
          }
      }
      
    • 看queue.next()方法源码
      • 大概的实现逻辑就是Message的出栈操作,里面可能对线程,并发控制做了一些限制等。获取到栈顶的Message对象之后开始执行:msg.target.dispatchMessage(msg)
      Message next() {
          // Return here if the message loop has already quit and been disposed.
          // This can happen if the application tries to restart a looper after quit
          // which is not supported.
          final long ptr = mPtr;
          if (ptr == 0) {
              return null;
          }
      
          int pendingIdleHandlerCount = -1; // -1 only during first iteration
          int nextPollTimeoutMillis = 0;
          for (;;) {
              if (nextPollTimeoutMillis != 0) {
                  Binder.flushPendingCommands();
              }
      
              nativePollOnce(ptr, nextPollTimeoutMillis);
      
              synchronized (this) {
                  // Try to retrieve the next message.  Return if found.
                  final long now = SystemClock.uptimeMillis();
                  Message prevMsg = null;
                  Message msg = mMessages;
                  if (msg != null && msg.target == null) {
                      // Stalled by a barrier.  Find the next asynchronous message in the queue.
                      do {
                          prevMsg = msg;
                          msg = msg.next;
                      } while (msg != null && !msg.isAsynchronous());
                  }
                  if (msg != null) {
                      if (now < msg.when) {
                          // Next message is not ready.  Set a timeout to wake up when it is ready.
                          nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                      } else {
                          // Got a message.
                          mBlocked = false;
                          if (prevMsg != null) {
                              prevMsg.next = msg.next;
                          } else {
                              mMessages = msg.next;
                          }
                          msg.next = null;
                          if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                          msg.markInUse();
                          return msg;
                      }
                  } else {
                      // No more messages.
                      nextPollTimeoutMillis = -1;
                  }
      
                  // Process the quit message now that all pending messages have been handled.
                  if (mQuitting) {
                      dispose();
                      return null;
                  }
      
                  // If first time idle, then get the number of idlers to run.
                  // Idle handles only run if the queue is empty or if the first message
                  // in the queue (possibly a barrier) is due to be handled in the future.
                  if (pendingIdleHandlerCount < 0
                          && (mMessages == null || now < mMessages.when)) {
                      pendingIdleHandlerCount = mIdleHandlers.size();
                  }
                  if (pendingIdleHandlerCount <= 0) {
                      // No idle handlers to run.  Loop and wait some more.
                      mBlocked = true;
                      continue;
                  }
      
                  if (mPendingIdleHandlers == null) {
                      mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                  }
                  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
              }
      
              // Run the idle handlers.
              // We only ever reach this code block during the first iteration.
              for (int i = 0; i < pendingIdleHandlerCount; i++) {
                  final IdleHandler idler = mPendingIdleHandlers[i];
                  mPendingIdleHandlers[i] = null; // release the reference to the handler
      
                  boolean keep = false;
                  try {
                      keep = idler.queueIdle();
                  } catch (Throwable t) {
                      Log.wtf(TAG, "IdleHandler threw exception", t);
                  }
      
                  if (!keep) {
                      synchronized (this) {
                          mIdleHandlers.remove(idler);
                      }
                  }
              }
      
              // Reset the idle handler count to 0 so we do not run them again.
              pendingIdleHandlerCount = 0;
      
              // While calling an idle handler, a new message could have been delivered
              // so go back and look again for a pending message without waiting.
              nextPollTimeoutMillis = 0;
          }
      }
      
    • 那么msg.target是什么呢?通过追踪可以知道就是定义的Handler对象,然后查看一下Handler类的dispatchMessage方法:
      • 可以看到,如果我们设置了callback(Runnable对象)的话,则会直接调用handleCallback方法
      • 在初始化Handler的时候设置了callback(Runnable)对象,则直接调用run方法。
      public void dispatchMessage(Message msg) {
          if (msg.callback != null) {
              handleCallback(msg);
          } else {
              if (mCallback != null) {
                  if (mCallback.handleMessage(msg)) {
                      return;
                  }
              }
              handleMessage(msg);
          }
      }
      
      private static void handleCallback(Message message) {
          message.callback.run();
      }
      

    8.runOnUiThread如何实现子线程更新UI

    • 看看源码,如下所示
      • 如果msg.callback为空的话,会直接调用我们的mCallback.handleMessage(msg),即handler的handlerMessage方法。由于Handler对象是在主线程中创建的,所以handler的handlerMessage方法的执行也会在主线程中。
      • 在runOnUiThread程序首先会判断当前线程是否是UI线程,如果是就直接运行,如果不是则post,这时其实质还是使用的Handler机制来处理线程与UI通讯。
      public void dispatchMessage(Message msg) {
          if (msg.callback != null) {
              handleCallback(msg);
          } else {
              if (mCallback != null) {
                  if (mCallback.handleMessage(msg)) {
                      return;
                  }
              }
              handleMessage(msg);
          }
      }
      
      @Override
      public final void runOnUiThread(Runnable action) {
          if (Thread.currentThread() != mUiThread) {
              mHandler.post(action);
          } else {
              action.run();
          }
      }
      

    9.Handler的post方法和view的post方法

    • Handler的post方法实现很简单,如下所示
      mHandler.post(new Runnable() {
          @Override
          public void run() {
      
          }
      });
      
      public final boolean post(Runnable r){
         return  sendMessageDelayed(getPostMessage(r), 0);
      }
      
    • view的post方法也很简单,如下所示
      • 可以发现其调用的就是activity中默认保存的handler对象的post方法
      public boolean post(Runnable action) {
          final AttachInfo attachInfo = mAttachInfo;
          if (attachInfo != null) {
              return attachInfo.mHandler.post(action);
          }
          ViewRootImpl.getRunQueue().post(action);
          return true;
      }
      
      public void post(Runnable action) {
          postDelayed(action, 0);
      }
      
      public void postDelayed(Runnable action, long delayMillis) {
          final HandlerAction handlerAction = new HandlerAction(action, delayMillis);
      
          synchronized (this) {
              if (mActions == null) {
                  mActions = new HandlerAction[4];
              }
              mActions = GrowingArrayUtils.append(mActions, mCount, handlerAction);
              mCount++;
          }
      }
      

    10.主线程中Looper的轮询死循环为何没阻塞主线程

    • 造成ANR的原因
      • 造成ANR的原因一般有两种:
        • 当前的事件没有机会得到处理(即主线程正在处理前一个事件,没有及时的完成或者looper被某种原因阻塞住了)
        • 当前的事件正在处理,但没有及时完成
      • 为了避免ANR异常,android使用了Handler消息处理机制。让耗时操作在子线程运行。
    • 问题描述
      • 在处理消息的时候使用了Looper.loop()方法,并且在该方法中进入了一个死循环,同时Looper.loop()方法是在主线程中调用的,那么为什么没有造成阻塞呢?
    • ActivityThread中main方法
      • ActivityThread类的注释上可以知道这个类管理着我们平常所说的主线程(UI线程)
      • 首先 ActivityThread 并不是一个 Thread,就只是一个 final 类而已。我们常说的主线程就是从这个类的 main 方法开始,main 方法很简短
      public static final void main(String[] args) {
          ...
          //创建Looper和MessageQueue
          Looper.prepareMainLooper();
          ...
          //轮询器开始轮询
          Looper.loop();
          ...
      }
      
    • Looper.loop()方法无限循环
      • 看看Looper.loop()方法无限循环部分的代码
      while (true) {
         //取出消息队列的消息,可能会阻塞
         Message msg = queue.next(); // might block
         ...
         //解析消息,分发消息
         msg.target.dispatchMessage(msg);
         ...
      }
      
      • 为什么这个死循环不会造成ANR异常呢?
        • 因为Android 的是由事件驱动的,looper.loop() 不断地接收事件、处理事件,每一个点击触摸或者说Activity的生命周期都是运行在 Looper.loop() 的控制之下,如果它停止了,应用也就停止了。只能是某一个消息或者说对消息的处理阻塞了 Looper.loop(),而不是 Looper.loop() 阻塞它。
    • 处理消息handleMessage方法
      • 如下所示
      • 可以看见Activity的生命周期都是依靠主线程的Looper.loop,当收到不同Message时则采用相应措施。
      • 如果某个消息处理时间过长,比如你在onCreate(),onResume()里面处理耗时操作,那么下一次的消息比如用户的点击事件不能处理了,整个循环就会产生卡顿,时间一长就成了ANR。
      public void handleMessage(Message msg) {
          if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what));
          switch (msg.what) {
              case LAUNCH_ACTIVITY: {
                  Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart");
                  final ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                  r.packageInfo = getPackageInfoNoCheck(r.activityInfo.applicationInfo, r.compatInfo);
                  handleLaunchActivity(r, null);
                  Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
              }
              break;
              case RELAUNCH_ACTIVITY: {
                  Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart");
                  ActivityClientRecord r = (ActivityClientRecord) msg.obj;
                  handleRelaunchActivity(r);
                  Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
              }
              break;
              case PAUSE_ACTIVITY:
                  Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                  handlePauseActivity((IBinder) msg.obj, false, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 2) != 0);
                  maybeSnapshot();
                  Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                  break;
              case PAUSE_ACTIVITY_FINISHING:
                  Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause");
                  handlePauseActivity((IBinder) msg.obj, true, (msg.arg1 & 1) != 0, msg.arg2, (msg.arg1 & 1) != 0);
                  Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
                  break;
              ...........
          }
      }
      
    • loop的循环消耗性能吗?
      • 主线程Looper从消息队列读取消息,当读完所有消息时,主线程阻塞。子线程往消息队列发送消息,并且往管道文件写数据,主线程即被唤醒,从管道文件读取数据,主线程被唤醒只是为了读取消息,当消息读取完毕,再次睡眠。因此loop的循环并不会对CPU性能有过多的消耗。
    • 得出结论
      • 简单的来说:ActivityThread的main方法主要就是做消息循环,一旦退出消息循环,那么你的程序也就可以退出了。

    11.得出部分结论

    • 得出得结论如下所示
      • 1.主线程中定义Handler对象,ActivityThread的main方法中会自动创建一个looper,并且与其绑定。如果是子线程中直接创建handler对象,则需要手动创建looper。不过手动创建不太友好,需要手动调用quit方法结束looper。这个后面再说
      • 2.一个线程中只存在一个Looper对象,只存在一个MessageQueue对象,可以存在N个Handler对象,Handler对象内部关联了本线程中唯一的Looper对象,Looper对象内部关联着唯一的一个MessageQueue对象。
      • 3.MessageQueue消息队列不是通过列表保存消息(Message)列表的,而是通过Message对象的next属性关联下一个Message从而实现列表的功能,同时所有的消息都是按时间排序的。

    其他介绍

    01.关于博客汇总链接

    02.关于我的博客

    相关文章

      网友评论

          本文标题:Android异步消息机制

          本文链接:https://www.haomeiwen.com/subject/mgxnaqtx.html