植物空间转录组分析1:Seurat基本流程 - 简书 (jianshu.com)
植物空间转录组分析2:STEEL+Seurat - 简书 (jianshu.com)
本文将继续使用兰花空间转录组的数据,同时运用文献中提到的STEEL聚类方法进行分析,该方法也是由戚继团队开发的,看文章感觉聚类效果不错。
不知道抽什么风,图片加载不出来,大家去博客看吧
聚类比较
目前该文章还未被接收,大家可以先用下软件,主要能提供聚类信息和每个聚类的marker基因,但个人认为可视化方面还有所欠缺,所以这个教程将结合STEEL的聚类方法与Seurat的可视化函数来完整复现文章的聚类图和拟时图
1. STEEL聚类分析
软件下载STEEL (sourceforge.io)
使用说明
主要的参数就是--beads --genes --pca --group
./steel filtered_feature_bc_matrix spatial/tissue_positions_list.csv --pca=20 pca20out
输出结果
genes文件里面包含的就是聚类特异基因,map文件就是聚类信息,我们使用pca20out.map.40的聚类信息进行后续的分析
3. Seurat聚类图
使用Seurat读取原始的数据,并将STEEL聚类信息读入
library(Seurat)
library(dplyr)
library(ggplot2)
library(magrittr)
library(cowplot)
library(gtools)
library(stringr)
library(Matrix)
library(tidyverse)
library(patchwork)
orc1<- Load10X_Spatial("Slide_1")
## 直接导入STEEL的聚类信息
STEEL<- read.delim("STEEL/Slide1.map.40",row.names = 1)
orc1[["seurat_clusters"]] <- NA
clusters<-data.frame(STEEL$Cluster)
rownames(clusters) <- rownames(STEEL)
orc1[["seurat_clusters"]][rownames(clusters),] <- clusters
## 去除NA值只保留有聚类的
orc1_new <- orc1[,rownames(clusters)]
Idents(orc1_new) <- 'seurat_clusters'
Idents(orc1_new) <- factor(Idents(orc1_new),levels=mixedsort(levels(Idents(orc1_new))))
接下来就是利用SpatialDimPlot绘制聚类图了
orc1_new <- SCTransform(orc1_new, assay = "Spatial", return.only.var.genes = FALSE, verbose = FALSE)
orc1_new <- RunPCA(orc1_new, features = VariableFeatures(orc1_new))
orc1_new <- RunTSNE(orc1_new, dims = 1:20)
p1 <- DimPlot(orc1_new, reduction = "tsne", label = TRUE)
p2 <- SpatialDimPlot(orc1_new, group.by = "seurat_clusters",label.size = 3, pt.size.factor = 1.3)
pearplot <- plot_grid(p1,p2)
ggsave("STEEL/tsne_Slide1_40.pdf", plot = pearplot, width = 6, height = 6)
聚类信息
这个结果其实已经和原文一模一样了,就是颜色不对应
原文
单看某个聚类对应关系,完全一致
p1<- SpatialDimPlot(orc1_new, cells.highlight = CellsByIdentities(object = orc1_new, idents = c(1:40)), facet.highlight = TRUE, ncol = 5)
ggsave("STEEL/cluster_Slide1all.pdf", plot = p1, width = 19, height = 12)
聚类对应
对应好聚类关系接下就是拟时分析了
4. 拟时分析
在文章中做了两次拟时分析,本次分析只以Fig2的组织进行分析,其他的大家也可以自尝试
library(monocle)
subdata <- subset(orc1_new, idents = c(19,21,37,38,39,40))
#选择要分析的亚群
expression_matrix = subdata@assays$Spatial@counts
cell_metadata <- data.frame(group = subdata[['orig.ident']],clusters = Idents(subdata))
gene_annotation <- data.frame(gene_short_name = rownames(expression_matrix), stringsAsFactors = F)
rownames(gene_annotation) <- rownames(expression_matrix)
pd <- new("AnnotatedDataFrame", data = cell_metadata)
fd <- new("AnnotatedDataFrame", data = gene_annotation)
HSMM <- newCellDataSet(expression_matrix,
phenoData = pd,
featureData = fd,
expressionFamily=negbinomial.size())
HSMM <- detectGenes(HSMM,min_expr = 0.1)
HSMM_myo <- estimateSizeFactors(HSMM)
HSMM_myo <- estimateDispersions(HSMM_myo)
disp_table <- dispersionTable(HSMM_myo)
disp.genes <- subset(disp_table, mean_expression >= 0.1 )
disp.genes <- as.character(disp.genes$gene_id)
HSMM_myo <- reduceDimension(HSMM_myo, max_components = 2, method = 'DDRTree')
HSMM_myo <-orderCells(HSMM_myo,reverse = T)
#State轨迹分布图
plot1 <- plot_cell_trajectory(HSMM_myo, color_by = "State")
##Cluster轨迹分布图
plot2 <- plot_cell_trajectory(HSMM_myo, color_by = "clusters")
##Pseudotime轨迹图
plot3 <- plot_cell_trajectory(HSMM_myo, color_by = "Pseudotime")
plotc <- plot1|plot2|plot3
ggsave("STEEL/Combination1.pdf", plot = plotc, width = 18, height = 6.2)
#绘制拟时间
cell_Pseudotime <- data.frame(pData(HSMM_myo)$Pseudotime)
rownames(cell_Pseudotime) <- rownames(cell_metadata)
#把拟时间对应到到组织切片位置上
orc1_new[['Pseudotime']] <- NA
orc1_new[['Pseudotime']][rownames(cell_Pseudotime),] <- cell_Pseudotime
p1 <- SpatialFeaturePlot(orc1_new, features = c("Pseudotime"),pt.size.factor = 1.3)
ggsave("STEEL/pseudotime_feature1.pdf", plot = p1, width = 8, height = 9)
主要的亮点就在于可以把拟时结果体现在我们的组织切片上,这样我们在orderCells这一步可以更加方便的判断每个spot的拟时间
正文结果
体现在切片上
可以看到和文章里的是一模一样的,接下来就是复现文章中的基因拟时分布和BEAM结果
data_subset <- HSMM_myo['PAXXG054350',]
p1<-plot_genes_in_pseudotime(data_subset, color_by = "clusters")
data_subset <- HSMM_myo['PAXXG051950',]
p2<-plot_genes_in_pseudotime(data_subset, color_by = "clusters")
data_subset <- HSMM_myo['PAXXG086750',]
p3<-plot_genes_in_pseudotime(data_subset, color_by = "clusters")
data_subset <- HSMM_myo['PAXXG345890',]
p4<-plot_genes_in_pseudotime(data_subset, color_by = "clusters")
data_subset <- HSMM_myo['PAXXG010560',]
p5<-plot_genes_in_pseudotime(data_subset, color_by = "clusters")
data_subset <- HSMM_myo['PAXXG074500',]
p6<-plot_genes_in_pseudotime(data_subset, color_by = "clusters") #color_by可以换成state或者pseudotime
pearplot <- plot_grid(p1,p2,p3,p4,p5,p6,align = "v",axis = "b",ncol = 1)
ggsave("STEEL/gene_pseudotime1.pdf", plot = pearplot, width = 5, height = 15)
#拟时相关基因聚类热图
disp_table <- dispersionTable(HSMM_myo)
disp.genes <- subset(disp_table, mean_expression >= 0.5&dispersion_empirical >= 1*dispersion_fit)
disp.genes <- as.character(disp.genes$gene_id)
mycds_sub <- HSMM_myo[disp.genes,]
diff_test <- differentialGeneTest(HSMM_myo[disp.genes,], cores = 4,
fullModelFormulaStr = "~sm.ns(Pseudotime)")
sig_gene_names <- row.names(subset(diff_test, qval < 1e-04))
p2 = plot_pseudotime_heatmap(HSMM_myo[sig_gene_names,], num_clusters=6,
show_rownames=F, return_heatmap=T)
ggsave("STEEL/pseudotime_heatmap1.pdf", plot = p2, width = 5, height = 10)
## BEAM分析
my_pseudotime_de <- differentialGeneTest(HSMM_myo, cores = 5)
BEAM_res <- BEAM(HSMM_myo, branch_point = 1, cores = 4)
BEAM_res <- BEAM_res[order(BEAM_res$qval),]
BEAM_res <- BEAM_res[,c("gene_short_name", "pval", "qval")]
mycds_sub_beam <- HSMM_myo[row.names(subset(BEAM_res, qval < 1e-4)),]
pdf("STEEL/BEAM1.pdf", width = 8, height = 12)
plot_genes_branched_heatmap(mycds_sub_beam, branch_point = 1, num_clusters = 6, cores = 4,show_rownames = FALSE)
dev.off()
可以看到BEAM不太相同,但除了这个以外其他的都是完全一致,这次分析达到了文章中的效果,比较满意
pseudotimeBEAM
总结
目前植物空间转录组刚刚起步,相信今年会有很多文章出现,到时候主要就是看创新点在哪,能解决什么问题
转载请注明>>>周小钊的博客, 打赏推荐博客
网友评论