美文网首页
7、Elasticsearch快速入门_Elasticsearc

7、Elasticsearch快速入门_Elasticsearc

作者: 拉提娜的爸爸 | 来源:发表于2019-12-18 20:02 被阅读0次

    第一个分析需求:计算每个tag下的商品数量

    例如:
    GET /ecommerce/product/_search
    {
      "aggs": {
        "group_by_tags": {
          "terms": { "field": "tags" }
        }
      }
    }
    -------------------------------------------------------------------------------------------------
    
    结果出现这种错误
    解决方式:将fielddata设置为true
    PUT /ecommerce/_mapping/product
    {
      "properties": {
        "tags": {
          "type": "text",
          "fielddata": true
        }
      }
    }
    -------------------------------------------------------------------------------------------------
    设置fielddata为true后查询结果:
    {
      "took": 9,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 1,
        "hits": [
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "2",
            "_score": 1,
            "_source": {
              "name": "jiajieshi yagao",
              "desc": "youxiao fangzhu",
              "price": 25,
              "producer": "jiajieshi producer",
              "tags": [
                "fangzhu"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "4",
            "_score": 1,
            "_source": {
              "name": "special yagao",
              "desc": "special meibai",
              "price": 50,
              "producer": "special yagao producer",
              "tags": [
                "meibai"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "1",
            "_score": 1,
            "_source": {
              "name": "gaolujie yagao",
              "desc": "gaoxiao meibai",
              "price": 30,
              "producer": "gaolujie producer",
              "tags": [
                "meibai",
                "fangzhu"
              ]
            }
          },
          {
            "_index": "ecommerce",
            "_type": "product",
            "_id": "3",
            "_score": 1,
            "_source": {
              "name": "zhonghua yagao",
              "desc": "caoben zhiwu",
              "price": 40,
              "producer": "zhonghua producer",
              "tags": [
                "qingxin"
              ]
            }
          }
        ]
      },
      "aggregations": {
        "group_by_tags": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "fangzhu",
              "doc_count": 2
            },
            {
              "key": "meibai",
              "doc_count": 2
            },
            {
              "key": "qingxin",
              "doc_count": 1
            }
          ]
        }
      }
    }
    
    以上结果有其他数据,精简结果,设置size:0
    GET /ecommerce/product/_search
    {
      "size": 0, 
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          }
        }
      }
    }
    
    查询结果

    第二个聚合分析的需求:对名称中包含yagao的商品,计算每个tag下的商品数量

    举例:
    GET /ecommerce/product/_search
    {
      "size": 0, 
      "query": {
        "match": {
          "name": "yagao"
        }
      },
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          }
        }
      }
    }
    
    对名称中包含yagao的商品,计算每个tag下的商品数量

    第三个聚合分析的需求:先分组,再算每组的平均值,计算每个tag下的商品的平均价格

    GET /ecommerce/product/_search
    {
      "size": 0
      , "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          }
          , "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        } 
      }
    }
    
    先分组,再算每组的平均值,计算每个tag下的商品的平均价格

    第四个数据分析需求:计算每个tag下的商品的平均价格,并且按照平均价格降序排序

    GET /ecommerce/product/_search
    {
      "size": 0
      , "aggs": {
        "all_tags": {
          "terms": {
            "field": "tags",
            "order": {"avg_price":"desc"}
          }
          , "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
    -------------------------------------------------------------------------------------------------
    结果:
    {
      "took": 20,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "all_tags": {
          "doc_count_error_upper_bound": 0,
          "sum_other_doc_count": 0,
          "buckets": [
            {
              "key": "meibai",
              "doc_count": 2,
              "avg_price": {
                "value": 40
              }
            },
            {
              "key": "qingxin",
              "doc_count": 1,
              "avg_price": {
                "value": 40
              }
            },
            {
              "key": "fangzhu",
              "doc_count": 2,
              "avg_price": {
                "value": 27.5
              }
            }
          ]
        }
      }
    }
    

    第五个数据分析需求:按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格

    GET /ecommerce/product/_search
    {
      "size": 0,
      "aggs": {
        "group_by_price": {
          "range": {
            "field": "price",
            "ranges": [
              {
                "from": 0,
                "to": 20
              },
              {
                "from": 20,
                "to": 40
              },
              {
                "from": 40,
                "to": 60
              }
            ]
          },
          "aggs": {
            "group_by_tags": {
              "terms": {
                "field": "tags"
              }
              , "aggs": {
                "avg_price": {
                  "avg": {
                    "field": "price"
                  }
                }
              }
            }
          }
        }
      }
    }
    -------------------------------------------------------------------------------------------------
    结果:
    {
      "took": 6,
      "timed_out": false,
      "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
      },
      "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
      },
      "aggregations": {
        "group_by_price": {
          "buckets": [
            {
              "key": "0.0-20.0",
              "from": 0,
              "to": 20,
              "doc_count": 0,
              "group_by_tags": {
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0,
                "buckets": []
              }
            },
            {
              "key": "20.0-40.0",
              "from": 20,
              "to": 40,
              "doc_count": 2,
              "group_by_tags": {
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0,
                "buckets": [
                  {
                    "key": "fangzhu",
                    "doc_count": 2,
                    "avg_price": {
                      "value": 27.5
                    }
                  },
                  {
                    "key": "meibai",
                    "doc_count": 1,
                    "avg_price": {
                      "value": 30
                    }
                  }
                ]
              }
            },
            {
              "key": "40.0-60.0",
              "from": 40,
              "to": 60,
              "doc_count": 2,
              "group_by_tags": {
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0,
                "buckets": [
                  {
                    "key": "meibai",
                    "doc_count": 1,
                    "avg_price": {
                      "value": 50
                    }
                  },
                  {
                    "key": "qingxin",
                    "doc_count": 1,
                    "avg_price": {
                      "value": 40
                    }
                  }
                ]
              }
            }
          ]
        }
      }
    }
    

    相关文章

      网友评论

          本文标题:7、Elasticsearch快速入门_Elasticsearc

          本文链接:https://www.haomeiwen.com/subject/mimunctx.html