美文网首页
Java内存模型中的重排序(三)

Java内存模型中的重排序(三)

作者: WinkTink | 来源:发表于2020-12-18 15:42 被阅读0次

           在执行程序时,为了提高性能,编译器和处理器常常会对指令做重排序。

    一.  重排序类型

            1)编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。

            2)指令级并行的重排序。现代处理器采用了指令级并行技术(Instruction-LevelParallelism,ILP)来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。

            3)内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

    二.  重排序与依赖性

    数据依赖性

           如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性。数据依赖分为下列3种类型,这3种情况,只要重排序两个操作的执行顺序,程序的执行结果就会被改变。

    控制依赖性

            flag变量是个标记,用来标识变量a是否已被写入,在use方法中比变量i依赖if (flag)的判断,这里就叫控制依赖,如果发生了重排序,结果就不对了。

    as-if-serial

    不管如何重排序,都必须保证代码在单线程下的运行正确,连单线程下都无法正确,更不用讨论多线程并发的情况,所以就提出了一个as-if-serial的概念。

    as-if-serial语义的意思是:不管怎么重排序(编译器和处理器为了提高并行度),(单线程)程序的执行结果不能被改变。编译器、runtime和处理器都必须遵守as-if-serial语义。为了遵守as-if-serial语义,编译器和处理器不会对存在数据依赖关系的操作做重排序,因为这种重排序会改变执行结果。(强调一下,这里所说的数据依赖性仅针对单个处理器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器和处理器考虑。)但是,如果操作之间不存在数据依赖关系,这些操作依然可能被编译器和处理器重排序。

    1和3之间存在数据依赖关系,同时2和3之间也存在数据依赖关系。因此在最终执行的指令序列中,3不能被重排序到1和2的前面(3排到1和2的前面,程序的结果将会被改变)。但1和2之间没有数据依赖关系,编译器和处理器可以重排序1和2之间的执行顺序。

    asif-serial语义使单线程下无需担心重排序的干扰,也无需担心内存可见性问题。

    三. 并发下重排序带来的问题

    这里假设有两个线程A和B,A首先执行init ()方法,随后B线程接着执行use ()方法。线程B在执行操作4时,能否看到线程A在操作1对共享变量a的写入呢?答案是:不一定能看到。

    由于操作1和操作2没有数据依赖关系,编译器和处理器可以对这两个操作重排序;同样,操作3和操作4没有数据依赖关系,编译器和处理器也可以对这两个操作重排序。让我们先来看看,当操作1和操作2重排序时,可能会产生什么效果?操作1和操作2做了重排序。程序执行时,线程A首先写标记变量flag,随后线程B读这个变量。由于条件判断为真,线程B将读取变量a。此时,变量a还没有被线程A写入,这时就会发生错误!

    当操作3和操作4重排序时会产生什么效果?

    在程序中,操作3和操作4存在控制依赖关系。当代码中存在控制依赖性时,会影响指令序列执行的并行度。为此,编译器和处理器会采用猜测(Speculation)执行来克服控制相关性对并行度的影响。以处理器的猜测执行为例,执行线程B的处理器可以提前读取并计算a*a,然后把计算结果临时保存到一个名为重排序缓冲(Reorder Buffer,ROB)的硬件缓存中。当操作3的条件判断为真时,就把该计算结果写入变量i中。猜测执行实质上对操作3和4做了重排序,问题在于这时候,a的值还没被线程A赋值。在单线程程序中,对存在控制依赖的操作重排序,不会改变执行结果(这也是as-if-serial语义允许对存在控制依赖的操作做重排序的原因);但在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。

    四.  解决在并发下的问题

    1)内存屏障——禁止重排序

    Java编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序,从而让程序按我们预想的流程去执行。

    1、保证特定操作的执行顺序。

    2、影响某些数据(或则是某条指令的执行结果)的内存可见性。

    编译器和CPU能够重排序指令,保证最终相同的结果,尝试优化性能。插入一条Memory Barrier会告诉编译器和CPU:不管什么指令都不能和这条Memory Barrier指令重排序。

    Memory Barrier所做的另外一件事是强制刷出各种CPU cache,如一个Write-Barrier(写入屏障)将刷出所有在Barrier之前写入 cache 的数据,因此,任何CPU上的线程都能读取到这些数据的最新版本。

    JMM把内存屏障指令分为4类,解释表格,StoreLoad Barriers是一个“全能型”的屏障,它同时具有其他3个屏障的效果。现代的多处理器大多支持该屏障(其他类型的屏障不一定被所有处理器支持)。

    2)临界区(synchronized?)

    临界区内的代码可以重排序(但JMM不允许临界区内的代码“逸出”到临界区之外,那样会破坏监视器的语义)。JMM会在退出临界区和进入临界区这两个关键时间点做一些特别处理,虽然线程A在临界区内做了重排序,但由于监视器互斥执行的特性,这里的线程B根本无法“观察”到线程A在临界区内的重排序。这种重排序既提高了执行效率,又没有改变程序的执行结果。

    相关文章

      网友评论

          本文标题:Java内存模型中的重排序(三)

          本文链接:https://www.haomeiwen.com/subject/mjuooqtx.html