美文网首页
Handler的线程切换与事件分发

Handler的线程切换与事件分发

作者: 我看Android | 来源:发表于2020-11-18 16:30 被阅读0次

每一个Android应用都是由事件驱动的,每个事件都会转化为一个系统消息,即Message。应用在运行过程中会源源不断的产生、处理、销毁Message。负责存储消息的是每个进程默认的消息队列MessageQueue,这个消息队列维护了一个待处理的消息列表,由一个消息循环Loop不断的将消息取出交给处理人Handler进行处理

关键类

Message: 应用驱动事件
MessageQueue:Message存储数据结构 维护一个待处理的消息列表,遵循FIFO原则
Looper:负责MessageQueue与Handler之间的通信,不断的从MessageQueue中取出Message发送的Handler处理
Handler:将Message发送到MessageQueue的消息队列中,接收Looper传递的Message进行分发处理

Handler常用构造

//无参构造  默认取当前线程Looper
 public Handler() {
        this(null, false);
    }
 //指定Looper
  public Handler(Looper looper) {
        this(looper, null, false);
    }

示例

    Handler handler;

    private void mainHandler() {
        handler = new Handler();  ①
        new Thread(new Runnable() {
            @Override
            public void run() {
                handler.sendEmptyMessage(0);
            }
        }).start();
    }

    private void childHandler() {
        new Thread(new Runnable() {
            @Override
            public void run() {
                handler = new Handler();  ②
             // handler = new Handler(getMainLooper());  ③
                handler.sendEmptyMessage(0);
            }
        }).start();
    }

    private void childHandler2() {
        new Thread(new Runnable() {
            @Override
            public void run() {
                Looper.prepare();
                handler = new Handler();  ④
                handler.sendEmptyMessage(0);
                Looper.loop();
            }
        }).start();
    }

在上述代码中①③④对于handler的初始化皆可用, ②中会直接报错,原因在于handler在初始化时会校验Looper 是否为空

 public Handler() {
        this(null, false);
    }
    public Handler(Callback callback, boolean async) {
        ......
       //对mLooper 进行赋值
        mLooper = Looper.myLooper();
       //mLooper 判空处理
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

进入Looper.myLooper()方法看一下

    //Looper存储的数据结构
    static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();

    public static @Nullable Looper myLooper() {
        //获取Looper
        return sThreadLocal.get();
    }

ThreadLocal是一个线程的内部存储类常用方法为set存入 get获取
我们去搜索一下set方法在哪里将Looper对象 set存入

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        //校验Looper  每个线程只能绑定一个Looper  
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        //每次set存入皆是new一个新的Looper对象
        sThreadLocal.set(new Looper(quitAllowed));
    }
  //Looper的构造
  private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

通过查看Looper的构造方法 发现其只在prepare方法中进行了对象的创建,在Handler初始化时并没有实例化Looper,因此在子线程中创建hanldler需要指定Looper或者先调用Looper 的prepare方法进行looper实例化
而在主线程中则不需要 原因如下

    public static void main(String[] args) {
       ......
        Looper.prepareMainLooper();
       ......
        ActivityThread thread = new ActivityThread();
        thread.attach(false, startSeq);

        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }
        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }
    }
    public static void prepareMainLooper() {
        //调用prepare方法实例化
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            //将当前线程的Looper赋值给sMainLooper 
            sMainLooper = myLooper();
        }
    }

在应用创建时已经调用了prepareMainLooper方法进行了Looper的实例化

API

handler.post()

   public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }


在post方法中通过调用getPostMessage方法将传入的Runnable参数包装到一个Message对象中,然后在传给sendMessageDelayed
函数。

    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
       //获取当前handler所在的消息队列       
         MessageQueue queue = mQueue;
       //判断队列是否为空
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            //消息队列为空 直接返回
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

sendMessageDelayed函数再调用了sendMessageAtTime函数,在sendMessageAtTime函数中完成了对队列的获取与判空,并将封装好的message对象加入到改handler所在的消息队列在。由于handler在创建时就已经关联了Looper

    //无参构造最终调用
    public Handler(Callback callback, boolean async) {
       ......
        //获取Looper并赋值给即将创建的Handler
        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
   //带有Looper 的有参构造最终调用
    public Handler(Looper looper, Callback callback, boolean async) {
       //将传入的Looper赋值给即将创建的Handler
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

因此,在sendMessageAtTime函数中handler实现了消息的线程切换,无论在哪个线程中调用handler发送消息,最终执行到sendMessageAtTime函数时都会讲封装好的message对象加入到改handler在创建时所持有的线程的Looper的消息队列中进行循环处理
同理在 handler.postDelayed() handler.sendMessage() handler.sendEmptyMessage()等其他负责进行消息传递的api中最终也是调用到了sendMessageAtTime函数进行处理

    public final boolean postDelayed(Runnable r, Object token, long delayMillis)
    {
        return sendMessageDelayed(getPostMessage(r, token), delayMillis);
    }

    public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
    public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }
    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

上面就是handler进行线程切换的实现了,下面我们看一下Looper是如何将Message从messageQueue中循环取出交由Handler进行处理的

  public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
       //获取消息队列
        final MessageQueue queue = me.mQueue;
        ......
        for (;;) {
            //获取消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ......
            try {
                //处理消息
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ......
            //消息回收
            msg.recycleUnchecked();
        }
    }

我们追入Message 中发现target类型为Handler,最终消息处理会调用到Handler的dispatchMessage函数

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

dispatchMessage函数依然只是负责分发的函数。如果msg中Runnable 类型的mCallback参数不为空,则执行handleCallback函数,最终调用到mCallback的run函数

    private static void handleCallback(Message message) {
        message.callback.run();
    }

否则再进行 Callback 类型的mCallback 变量判空处理。mCallback 的赋值在handler的构造函数中

    public Handler(Callback callback) {
        this(callback, false);
    }

一般不会用到,因此我们可以默认mCallback 为空执行handleMessage函数进行消息处理

关于Message.obtain

    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }

关于该函数我要说的是使用了享元模式,避免了Message对象的大量创建,大家有兴趣的可以去查阅一下源码。知识量有点大,涉及到Message的数据结构、创建、回收,此处就不说了

总结

handler在创建时会持有一个自己的Looper(通过自己传入或Looper.preper创建)该Looper属于当前线程或指定线程,Looper中有一个消息队列,handler无论在哪个线程发送消息时都会将封装好的Message对象传入该消息队列,实现了消息的线程切换,然后通过Looper.loop 进行不断地消息循环取出处理

相关文章

网友评论

      本文标题:Handler的线程切换与事件分发

      本文链接:https://www.haomeiwen.com/subject/mlwqiktx.html