[译] Flink 快速入门指南

作者: 翼徳 | 来源:发表于2018-10-12 15:33 被阅读396次

    原文地址:https://ci.apache.org/projects/flink/flink-docs-release-1.6/quickstart/setup_quickstart.html

    只需几个简单的步骤即可启动并运行Flink示例程序。

    设置:下载并配置Flink

    Flink可在 LinuxMac OS XWindows上运行。为了能够运行 Flink,唯一的要求是安装一个有效的 Java 8.x 环境。Windows用户请查看 Flink on Windows 指南,该指南介绍了如何在Windows上配置运行Flink。

    您可以运行以下命令来检查Java环境:

    java -version
    

    如果你有Java 8,将输出如下所示:

    java version "1.8.0_111"
    Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
    Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)
    

    下载与解压

    1. downloads page 下载二进制文件。您可以选择任何您喜欢的 Hadoop/Scala组合。 如果您打算只使用本地文件系统,任何Hadoop版本都可以正常工作。
    2. 转到下载目录。
    3. 解压缩下载的存档。
    $ cd ~/Downloads        # Go to download directory
    $ tar xzf flink-*.tgz   # Unpack the downloaded archive
    $ cd flink-1.6.1
    

    启动本地Flink群集

    $ ./bin/start-cluster.sh  # Start Flink
    

    检查Dispatcher的web前端 http://localhost:8081 并确保一切正常运行。Web前端应报告单个可用的 TaskManager 实例。

    您还可以通过检查logs目录中的日志文件来验证系统是否正在运行:

    $ tail log/flink-*-standalonesession-*.log
    INFO ... - Rest endpoint listening at localhost:8081
    INFO ... - http://localhost:8081 was granted leadership ...
    INFO ... - Web frontend listening at http://localhost:8081.
    INFO ... - Starting RPC endpoint for StandaloneResourceManager at akka://flink/user/resourcemanager .
    INFO ... - Starting RPC endpoint for StandaloneDispatcher at akka://flink/user/dispatcher .
    INFO ... - ResourceManager akka.tcp://flink@localhost:6123/user/resourcemanager was granted leadership ...
    INFO ... - Starting the SlotManager.
    INFO ... - Dispatcher akka.tcp://flink@localhost:6123/user/dispatcher was granted leadership ...
    INFO ... - Recovering all persisted jobs.
    INFO ... - Registering TaskManager ... under ... at the SlotManager.
    

    看代码

    您可以在scalaJava上的GitHub上找到此 SocketWindowWordCount 示例的完整源代码。

    public class SocketWindowWordCount {
    
        public static void main(String[] args) throws Exception {
    
            // the port to connect to
            final int port;
            try {
                final ParameterTool params = ParameterTool.fromArgs(args);
                port = params.getInt("port");
            } catch (Exception e) {
                System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'");
                return;
            }
    
            // get the execution environment
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            // get input data by connecting to the socket
            DataStream<String> text = env.socketTextStream("localhost", port, "\n");
    
            // parse the data, group it, window it, and aggregate the counts
            DataStream<WordWithCount> windowCounts = text
                .flatMap(new FlatMapFunction<String, WordWithCount>() {
                    @Override
                    public void flatMap(String value, Collector<WordWithCount> out) {
                        for (String word : value.split("\\s")) {
                            out.collect(new WordWithCount(word, 1L));
                        }
                    }
                })
                .keyBy("word")
                .timeWindow(Time.seconds(5), Time.seconds(1))
                .reduce(new ReduceFunction<WordWithCount>() {
                    @Override
                    public WordWithCount reduce(WordWithCount a, WordWithCount b) {
                        return new WordWithCount(a.word, a.count + b.count);
                    }
                });
    
            // print the results with a single thread, rather than in parallel
            windowCounts.print().setParallelism(1);
    
            env.execute("Socket Window WordCount");
        }
    
        // Data type for words with count
        public static class WordWithCount {
    
            public String word;
            public long count;
    
            public WordWithCount() {}
    
            public WordWithCount(String word, long count) {
                this.word = word;
                this.count = count;
            }
    
            @Override
            public String toString() {
                return word + " : " + count;
            }
        }
    }
    

    运行示例

    现在,我们将运行此Flink应用程序。它将从socket读取文本,并且每5秒打印一次在前5秒内每个不同单词的出现次数。

    • 首先,我们使用netcat来启动本地服务器
    $ nc -l 9000
    
    • 提交Flink 程序:
    $ ./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9000
    Starting execution of program
    

    程序连接到 socket 并等待输入。 您可以检查Web界面以验证作业是否按预期运行:



    单词在5秒的时间窗口中计算(处理时间,切换窗口)并输出到 stdout。 监视TaskManager 的输出文件并在 nc 中写入一些文本(输入在点击后逐行发送到Flink):
    $ nc -l 9000
    lorem ipsum
    ipsum ipsum ipsum
    bye
    

    .out 文件在每次时间窗口结束后输出统计总数:

    $ tail -f log/flink-*-taskexecutor-*.out
    lorem : 1
    bye : 1
    ipsum : 4
    

    可以用以下命令停止Flink:

    $ ./bin/stop-cluster.sh
    

    相关文章

      网友评论

        本文标题:[译] Flink 快速入门指南

        本文链接:https://www.haomeiwen.com/subject/mpkgaftx.html