美文网首页
Java集合——LinkedHashMap

Java集合——LinkedHashMap

作者: yuhan_sining | 来源:发表于2020-03-05 20:01 被阅读0次

    LinkedHashMap继承HashMap并实现了Map接口,同时具有可预测的迭代顺序(按照插入顺序排序)。它与HashMap的不同之处在于,维护了一条贯穿其全部Entry的双向链表(因为额外维护了链表的关系,性能上要略差于HashMap,不过集合视图的遍历时间与元素数量成正比,而HashMap是与buckets数组的长度成正比的),可以认为它是散列表与链表的结合。

    /**
     * The head (eldest) of the doubly linked list.
     */
    transient LinkedHashMap.Entry<K,V> head;
    /**
     * The tail (youngest) of the doubly linked list.
     */
    transient LinkedHashMap.Entry<K,V> tail;
    /**
     * 迭代顺序模式的标记位,如果为true,采用访问排序,否则,采用插入顺序
     * 默认插入顺序(构造函数中默认设置为false)
     */
    final boolean accessOrder;
    /**
     * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
     * with the default initial capacity (16) and load factor (0.75).
     */
    public LinkedHashMap() {
        super();
        accessOrder = false;
    }
    

    LinkedHashMap的Entry实现也继承自HashMap,只不过多了指向前后的两个指针。

    /**
     * HashMap.Node subclass for normal LinkedHashMap entries.
     */
    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }
    

    你也可以通过构造函数来构造一个迭代顺序为访问顺序(accessOrder设为true)的LinkedHashMap,这个访问顺序指的是按照最近被访问的Entry的顺序进行排序(从最近最少访问到最近最多访问)。基于这点可以简单实现一个采用LRU(Least Recently Used)策略的缓存。

    public LinkedHashMap(int initialCapacity,
                         float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }
    

    LinkedHashMap复用了HashMap的大部分代码,所以它的查找实现是非常简单的,唯一稍微复杂点的操作是保证访问顺序。

    public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }
    

    还记得这些afterNodeXXXX命名格式的函数吗?我们之前已经在HashMap中见识过了,这些函数在HashMap中只是一个空实现,是专门用来让LinkedHashMap重写实现的hook函数。

    // 在HashMap.removeNode()的末尾处调用
       // 将e从LinkedHashMap的双向链表中删除
       void afterNodeRemoval(Node<K,V> e) { // unlink
           LinkedHashMap.Entry<K,V> p =
               (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
           p.before = p.after = null;
           if (b == null)
               head = a;
           else
               b.after = a;
           if (a == null)
               tail = b;
           else
               a.before = b;
       }
       // 在HashMap.putVal()的末尾处调用
       // evict是一个模式标记,如果为false代表buckets数组处于创建模式
       // HashMap.put()函数对此标记设置为true
       void afterNodeInsertion(boolean evict) { // possibly remove eldest
           LinkedHashMap.Entry<K,V> first;
           // LinkedHashMap.removeEldestEntry()永远返回false
           // 避免了最年长元素被删除的可能(就像一个普通的Map一样)
           if (evict && (first = head) != null && removeEldestEntry(first)) {
               K key = first.key;
               removeNode(hash(key), key, null, false, true);
           }
       }
       // HashMap.get()没有调用此函数,所以LinkedHashMap重写了get()
       // get()与put()都会调用afterNodeAccess()来保证访问顺序
       // 将e移动到tail,代表最近访问到的节点
       void afterNodeAccess(Node<K,V> e) { // move node to last
           LinkedHashMap.Entry<K,V> last;
           if (accessOrder && (last = tail) != e) {
               LinkedHashMap.Entry<K,V> p =
                   (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
               p.after = null;
               if (b == null)
                   head = a;
               else
                   b.after = a;
               if (a != null)
                   a.before = b;
               else
                   last = b;
               if (last == null)
                   head = p;
               else {
                   p.before = last;
                   last.after = p;
               }
               tail = p;
               ++modCount;
           }
       }
    

    注意removeEldestEntry()默认永远返回false,这时它的行为与普通的Map无异。如果你把removeEldestEntry()重写为永远返回true,那么就有可能使LinkedHashMap处于一个永远为空的状态(每次put()或者putAll()都会删除头节点)。

    一个比较合理的实现示例:

    protected boolean removeEldestEntry(Map.Entry eldest){
        return size() > MAX_SIZE;
    }
    

    LinkedHashMap重写了newNode()等函数,以初始化或连接节点到它内部的双向链表:

    // 链接节点p到链表尾部(或初始化链表)
    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
    }
    // 用dst替换掉src
    private void transferLinks(LinkedHashMap.Entry<K,V> src,
                               LinkedHashMap.Entry<K,V> dst) {
        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
        // src是头节点
        if (b == null)
            head = dst;
        else
            b.after = dst;
        // src是尾节点
        if (a == null)
            tail = dst;
        else
            a.before = dst;
    }   
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        LinkedHashMap.Entry<K,V> t =
            new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
        linkNodeLast(p);
        return p;
    }
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }
    

    遍历LinkedHashMap所需要的时间与Entry数量成正比,这是因为迭代器直接对双向链表进行迭代,而链表中只会含有Entry节点。迭代的顺序是从头节点开始一直到尾节点,插入操作会将新节点链接到尾部,所以保证了插入顺序,而访问顺序会通过afterNodeAccess()来保证,访问次数越多的节点越接近尾部。

    abstract class LinkedHashIterator {
        LinkedHashMap.Entry<K,V> next;
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;
        LinkedHashIterator() {
            next = head;
            expectedModCount = modCount;
            current = null;
        }
        public final boolean hasNext() {
            return next != null;
        }
        final LinkedHashMap.Entry<K,V> nextNode() {
            LinkedHashMap.Entry<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            current = e;
            next = e.after;
            return e;
        }
        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }
    final class LinkedKeyIterator extends LinkedHashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().getKey(); }
    }
    final class LinkedValueIterator extends LinkedHashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }
    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }
    

    转自:https://blog.csdn.net/woshimaxiao1/article/details/83902430

    相关文章

      网友评论

          本文标题:Java集合——LinkedHashMap

          本文链接:https://www.haomeiwen.com/subject/mqpcrhtx.html