Day16
学习内容 :掌握散列表的设计方法和应用场景,我们就可以在保证散列表性能的前提下,设计出工业级水平的散列表。
什么是散列表?
散列表的英文叫“Hash Table”,我们平时也叫它“哈希表”或者“Hash 表”。
散列表用的是数组支持按照下标随机访问数据的特性,所以散列表其实就是数组的一种扩展,由数组演化而来。可以说,如果没有数组,就没有散列表。
1.如何设计散列函数?
首先,散列函数的设计不能太复杂。
其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。
2.装载因子过大了怎么办?
装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大。
针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。
3.如何避免低效地扩容?
为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。
当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
4.如何选择冲突解决方法?
- 开放寻址法
当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因 - 链表法
首先,链表法对内存的利用率比开放寻址法要高。
基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
5.工业级散列表怎么应用?
- 初始大小
HashMap默认的初始大小是16
可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。 - 装载因子和动态扩容
最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。 - 散列冲突解决方法
HashMap 底层采用链表法来解决冲突 - 散列函数
int hash(Object key) {
int h = key.hashCode();
return (h ^ (h >>> 16)) & (capicity -1); //capicity表示散列表的大小
}
本文参考【极客时间】专栏《数据结构与算法之美》。
网友评论