模型评估指标
准确率(Accuracy)
准确率是指分类正确的样本占总样本个数的比例。
Accuracy = n(correct)/n(total)
当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率。所以,当不同类别的样本比例非常不均衡时,占比大的类别往往成为影响准确率的最主要因素。
精确率(Precision)& 召回率(Recall)
精确率是指分类正确的正样本个数占分类器判定为正样本的样本个数的比例。
召回率是指分类正确的正样本个数占真正的正样本个数的比例。
为了综合评估一个排序模型的好坏,不仅要看模型在不同Top N下的Precision@N和Recall@N,而且最好绘制出模型的P-R(Precision-
Recall)曲线。
P-R曲线的横轴是召回率,纵轴是精确率。对于一个排序模型来说,其P-R曲线上的一个点代表着,在某一阈值下,模型将大于该阈值的结果判定为正样本,小于该阈值的结果判定为负样本,此时返回结果对应的召回率和精确率。
除此之外,F1 score和ROC曲线也能综合地反映一个排序模型的性能。F1score是精准率和召回率的调和平均值,它定义为
均方误差(RMSE)
RMSE的公式为一般情况下,RMSE能够很好地反映回归模型预测值与真实值的偏离程度。但在实际问题中,如果存在个别偏离程度非常大的离群点(Outlier)时,即使离群点数量非常少,也会让RMSE指标变得很差。
针对这个问题,有什么解决方案呢?可以从三个角度来思考。第一,如果我们认定这些离群点是“噪声点”的话,就需要在数据预处理的阶段把这些噪声点过滤掉。第二,如果不认为这些离群点是“噪声点”的话,就需要进一步提高模型的预测能力,将离群点产生的机制建模进去(这是一个宏大的话题,这里就不展开讨论了)。第三,可以找一个更合适的指标来评估该模型。关于评估指标,其实是存在比RMSE的鲁棒性更好的指标,比如平均绝对百分比误差(Mean Absolute
Percent Error,MAPE),它定义为
相比RMSE,MAPE相当于把每个点的误差进行了归一化,降低了个别离群点带来的绝对误差的影响。
ROC曲线
ROC
ROC曲线的横坐标为假阳性率(False Positive Rate,FPR);纵坐标为真阳性率(True Positive Rate,TPR)。
FPR = FP/N
TPR = TP/P
P是真实的正样本的数量,N是真实的负样本的数量,TP是P个正样本中被分类器预测为正样本的个数,FP是N个负样本中被分类器预测为正样本的个数。
事实上,ROC曲线是通过不断移动分类器的“截断点”来生成曲线上的一组关键点的。
AUC
顾名思义,AUC指的是ROC曲线下的面积大小,该值能够量化地反映基于
ROC曲线衡量出的模型性能。计算AUC值只需要沿着ROC横轴做积分就可以了。
由于ROC曲线一般都处于y=x这条直线的上方(如果不是的话,只要把模型预测的概率反转成1−p就可以得到一个更好的分类器),所以AUC的取值一般在0.5~1之间。AUC越大,说明分类器越可能把真正的正样本排在前面,分类性能越好。
相比P-R曲线,ROC曲线有一个特点,当正负样本的分布发生变化时,ROC曲线的形状能够基本保持不变,而P-R曲线的形状一般会发生较剧烈的变化。
余弦距离的应用
关注的是向量之间的角度关系,并不关心它们的绝对大小,其取值范围是[−1,1]。当一对文本相似度的长度差距很大、但内容相近时,如果使用词频或词向量作为特征,它们在特征空间中的的欧氏距离通常很大;而如果使用余弦相似度的话,它们之间的夹角可能很小,因而相似度高。此外,在文本、图像、视频等领域,研究的对象的特征维度往往很高,余弦相似度在高维情况下依然保持“相同时为1,正交时为0,相反时为−1”的性质,而欧氏距离的数值则受维度的影响,范围不固定,并且含义也比较模糊。
在一些场景,例如Word2Vec中,其向量的模长是经过归一化的,此时欧氏距离与余弦距离有着单调的关系,即
其中|| A−B ||2表示欧氏距离,cos(A,B)表示余弦相似度(1−cos(A,B))表示余弦距离。在此场景下,如果选择距离最小(相似度最大)的近邻,那么使用余弦相似度和欧氏距离的结果是相同的。
AB测试
-
需要进行在线A/B测试的原因如下。
(1)离线评估无法完全消除模型过拟合的影响,因此,得出的离线评估结果无法完全替代线上评估结果。
(2)离线评估无法完全还原线上的工程环境。一般来讲,离线评估往往不会考虑线上环境的延迟、数据丢失、标签数据缺失等情况。因此,离线评估的结果是理想工程环境下的结果。
(3)线上系统的某些商业指标在离线评估中无法计算。离线评估一般是针对模型本身进行评估,而与模型相关的其他指标,特别是商业指标,往往无法直接获得。比如,上线了新的推荐算法,离线评估往往关注的是ROC曲线、P-R曲线等的改进,而线上评估可以全面了解该推荐算法带来的用户点击率、留存时长、PV访问量等的变化。这些都要由A/B测试来进行全面的评估。 -
如何进行AB测试
进行A/B测试的主要手段是进行用户分桶,即将用户分成实验组和对照组,对实验组的用户施以新模型,对对照组的用户施以旧模型。在分桶的过程中,要注意样本的独立性和采样方式的无偏性,确保同一个用户每次只能分到同一个桶中,在分桶过程中所选取的user_id需要是一个随机数,这样才能保证桶中的样本是无偏的。 -
如何划分实验组和对照组
无偏无稀释
模型评估的方法
■ Holdout检验
Holdout 检验是最简单也是最直接的验证方法,它将原始的样本集合随机划分成训练集和验证集两部分。比方说,对于一个点击率预测模型,我们把样本按照70%~30% 的比例分成两部分,70% 的样本用于模型训练;30% 的样本用于模型验证,包括绘制ROC曲线、计算精确率和召回率等指标来评估模型性能。
Holdout 检验的缺点很明显,即在验证集上计算出来的最后评估指标与原始分
组有很大关系。为了消除随机性,研究者们引入了“交叉检验”的思想。
■ 交叉检验
k-fold交叉验证:首先将全部样本划分成k个大小相等的样本子集;依次遍历这k个子集,每次把当前子集作为验证集,其余所有子集作为训练集,进行模型的训练和评估;最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k经常取10。
留一验证:每次留下1个样本作为验证集,其余所有样本作为测试集。样本总数为n,依次对n个样本进行遍历,进行n次验证,再将评估指标求平均值得到最终的评估指标。在样本总数较多的情况下,留一验证法的时间开销极大。事实上,留一验证是留p验证的特例。留p验证是每次留下p个样本作为验证集,而从n个元素中选择p个元素有种可能,因此它的时间开销更是远远高于留一验证,故而很少在实际工程中被应用。
■ 自助法
不管是Holdout检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这可能会影响模型训练效果。有没有能维持训练集样本规模的验证方法呢?
自助法可以比较好地解决这个问题。
自助法是基于自助采样法的检验方法。对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集。n次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,将这些没有被抽出的样本作为验证集,进行模型验证,这就是自助法的验证过程。
超参数调优
■ 网格搜索
网格搜索可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。如果采用较大的搜索范围以及较小的步长,网格搜索有很大概率找到全局最优值。然而,这种搜索方案十分消耗计算资源和时间,特别是需要调优的超参数比较多的时候。因此,在实际应用中,网格搜索法一般会先使用较广的搜索范围和较大的步长,来寻找全局最优值可能的位置;然后会逐渐缩小搜索范围和步长,来寻找更精确的最优值。这种操作方案可以降低所需的时间和计算量,但由于目标函数一般是非凸的,所以很可能会错过全局最优值。
■ 随机搜索
随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有值,而是在搜索范围中随机选取样本点。它的理论依据是,如果样本点集足够大,那么通过随机采样也能大概率地找到全局最优值,或其近似值。随机搜索一般会比网格搜索要快一些,但是和网格搜索的快速版一样,它的结果也是没法保证的。
■ 贝叶斯优化算法
贝叶斯优化算法在寻找最优最值参数时,采用了与网格搜索、随机搜索完全不同的方法。网格搜索和随机搜索在测试一个新点时,会忽略前一个点的信息;而贝叶斯优化算法则充分利用了之前的信息。贝叶斯优化算法通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。具体来说,它学习目标函数形状的方法是,首先根据先验分布,假设一个搜集函数;然后,每一次使用新的采样点来测试目标函数时,利用这个信息来更新目标函数的先验分布;最后,算法测试由后验分布给出的全局最值最可能出现的位置的点。对于贝叶斯优化算法,有一个需要注意的地方,一旦找到了一个局部最优值,它会在该区域不断采样,所以很容易陷入局部最优值。为了弥补这个缺陷,贝叶斯优化算法会在探索和利用之间找到一个平衡点,“探索”就是在还未取样的区域获取采样点;而“利用”则是根据后验分布在最可能出现全局最值的区域进行采样。
过拟合与欠拟合
■ 降低“过拟合”风险的方法
(1)从数据入手,获得更多的训练数据。使用更多的训练数据是决过拟合问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。当然,直接增加实验数据一般是很困难的,但是可以通过一定的规则来扩充训练数据。比如,在图像分类的问题上,可以通过图像的平移、旋转、缩放等方式扩充数据;更进一步地,可以使用生成式对抗网络来合成大量的新训练数据。
(2)降低模型复杂度。在数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。例如,在神经网络模型中减少网络层数、神经元个数等;在决策树模型中降低树的深度、进行剪枝等。
(3)正则化方法。给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中。以L2正则化为例:
这样,在优化原来的目标函数C0的同时,也能避免权值过大带来的过拟合风险。
(4)集成学习方法。集成学习是把多个模型集成在一起,来降低单一模型的
过拟合风险,如Bagging方法。
■ 降低“欠拟合”风险的方法
(1)添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通过挖掘“上下文特征”“ID类特征”“组合特征”等新的特征,往往能够取得更好的效果。在深度学习潮流中,有很多模型可以帮助完成特征工程,如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法。
(2)增加模型复杂度。简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。
(3)减小正则化系数。正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。
网友评论