美文网首页
无标题文章

无标题文章

作者: 大乔治 | 来源:发表于2016-11-21 01:25 被阅读0次

    import matplotlib.pyplot as plt

    import numpy as np

    class billiard_circle():

    def init(self,x_0,y_0,vx_0,vy_0,N,dt,alpha):

    self.x_0 = x_0

    self.y_0 = y_0

    self.vx_0 = vx_0

    self.vy_0 = vy_0

    self.N = N

    self.dt = dt

    self.alpha=alpha

    def motion_calculate(self):

    self.x = []

    self.y = []

    self.vx = []

    self.vy = []

    self.t = [0]

    self.x.append(self.x_0)

    self.y.append(self.y_0)

    self.vx.append(self.vx_0)

    self.vy.append(self.vy_0)

    for i in range(1,self.N):

    self.x.append(self.x[i - 1] + self.vx[i - 1]*self.dt)

    self.y.append(self.y[i - 1] + self.vy[i - 1]*self.dt)

    self.vx.append(self.vx[i - 1])

    self.vy.append(self.vy[i - 1])

    if (np.sqrt( self.x[i]2+(self.y[i]-self.alpha)2 ) > 1.0) and self.y[i]>self.alpha:

    self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y-self.alpha)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i],self.vy[i] = self.reflect1(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

    elif (np.sqrt( self.x[i]2+(self.y[i]+self.alpha)2 ) > 1.0) and self.y[i]<-self.alpha:

    self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y+self.alpha)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i],self.vy[i] = self.reflect2(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

    elif (self.x[i] < -1.0) and self.y[i]>-self.alpha and self.y[i]<self.alpha:

    self.x[i],self.y[i] = self.correct('x>-1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i] = - self.vx[i]

    elif (self.x[i] > 1.0) and self.y[i]>-self.alpha and self.y[i]<self.alpha:

    self.x[i],self.y[i] = self.correct('x<1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i] = - self.vx[i]

    self.t.append(self.t[i - 1] + self.dt)

    return self.x, self.y

    def correct(self,condition,x,y,vx,vy):

    vx_c = vx/100.0

    vy_c = vy/100.0

    while eval(condition):

    x = x + vx_c*self.dt

    y = y + vy_c*self.dt

    return x-vx_cself.dt,y-vy_cself.dt

    def reflect1(self,x,y,vx,vy):

    module = np.sqrt(x2+(y-self.alpha)2) ### normalization

    x = x/module

    y = (y-self.alpha)/module+self.alpha

    v = np.sqrt(vx2+vy2)

    cos1 = (vxx+vy(y-self.alpha))/v

    cos2 = (vx(y-self.alpha)-vyx)/v

    vt = -v*cos1

    vc = v*cos2

    vx_n = vtx+vc(y-self.alpha)

    vy_n = vt(y-self.alpha)-vcx

    return vx_n,vy_n

    def reflect2(self,x,y,vx,vy):

    module = np.sqrt(x2+(y+self.alpha)2) ### normalization

    x = x/module

    y = (y+self.alpha)/module-self.alpha

    v = np.sqrt(vx2+vy2)

    cos1 = (vxx+vy(y+self.alpha))/v

    cos2 = (vx(y+self.alpha)-vyx)/v

    vt = -v*cos1

    vc = v*cos2

    vx_n = vtx+vc(y+self.alpha)

    vy_n = vt(y+self.alpha)-vcx

    return vx_n,vy_n

    def plot(self):

    plt.figure(figsize = (8,8))

    plt.xlim(-1,1)

    plt.ylim(-1,1)

    plt.xlabel('x')

    plt.ylabel('y')

    plt.title('Stadium billiard $\alpha$=0.01')

    self.plot_boundary()

    plt.plot(self.x,self.y,'y')

    plt.savefig('chapter3_3.31.png',dpi = 144)

    plt.show()

    def plot_boundary(self):

    theta = 0

    x = []

    y = []

    while theta < np.pi:

    x.append(np.cos(theta))

    y.append(np.sin(theta)+0.01)

    theta+= 0.01

    plt.plot(x,y,'g.')

    while theta > np.pi and theta< 2*np.pi:

    x.append(np.cos(theta))

    y.append(np.sin(theta)-0.01)

    theta+= 0.01

    plt.plot(x,y,'g.')

    def phase_plot(self):

    record_x = []

    record_vx = []

    for i in range(len(self.x)):

    if (abs(self.y[i] - 0)<0.001):

    record_vx.append(self.vx[i])

    record_x.append(self.x[i])

    return record_vx, record_x

    plt.xlabel('x')

    plt.ylabel(r'$v_x$')

    plt.scatter(record_x,record_vx,s=1)

    plt.savefig('chapter3_3.31_phasey=0.png', dpi= 144)

    plt.show()

    sub1=plt.subplot(221)

    A=billiard_circle(0.2,0,1,0.6,500000,0.01,0)

    A.motion_calculate()

    vx,x=A.phase_plot()

    sub1.scatter(x, vx,s=1)

    plt.xlabel('x')

    plt.ylabel('$v_x$')

    sub1.set_title('$\alpha=0$')

    plt.show()

    sub2=plt.subplot(222)

    A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.001)

    A.motion_calculate()

    vx,x=A.phase_plot()

    sub2.scatter(x, vx,s=1)

    plt.xlabel('x')

    plt.ylabel('$v_x$')

    sub2.set_title('$\alpha=0.001$')

    plt.show()

    sub3=plt.subplot(223)

    A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.01)

    A.motion_calculate()

    vx,x=A.phase_plot()

    sub3.scatter(x, vx,s=1)

    plt.xlabel('x')

    plt.ylabel('$v_x$')

    sub3.set_title('$\alpha=0.01$')

    plt.show()

    sub4=plt.subplot(224)

    A=billiard_circle(0.2,0,1,0.6,500000,0.01,0.1)

    A.motion_calculate()

    vx,x=A.phase_plot()

    sub4.scatter(x, vx,s=1)

    plt.xlabel('x')

    plt.ylabel('$v_x$')

    sub4.set_title('$\alpha=0.1$')

    plt.show()

    相关文章

      网友评论

          本文标题:无标题文章

          本文链接:https://www.haomeiwen.com/subject/msaypttx.html