机器学习-数据清洗

作者: a3aac2d1b674 | 来源:发表于2018-11-23 18:05 被阅读4次

本文由brzhang发表

数据清洗

首先,为何需要对数据进行清洗

数据清洗的工作绝壁是非常枯燥的,做数据研究的的人绝对无法避开这个环节,其根本原因是因为我们从各种渠道拿到的数据可能会出现:

1、不合理的数据,你比如,样本中有些人的年龄超过了120岁,楼层的高度达到了1000层,以及其他的一些非常不合理的场景。

2、错误的类型,你比如,样例中,几乎所有的数据都是整形,然而,有一些是字符串类型,如果不进行处理,将这些数据直接喂给算法,一般情况下是要崩溃的。

3、计算机对于处理字符串类型比较吃力,有时候,需要我们将他转化为数字类型,这样就设计到一个映射关系,比如,样例性别,【男,女】,我们可以转化为1,2,房屋的类型【单间,一房一厅,二房一厅,三房一厅,商铺】可以对应的枚举出来,比如我在处理房屋朝向上的示例

#提取房屋的朝向
def parse_orientation(row):
    if '朝西南' in row:
        return 1
    elif '朝东北' in row:
        return 2
    elif '朝东' in row:
        return 3
    elif '朝南' in row:
        return 4
    elif '朝西北' in row:
        return 5
    elif '朝北' in row:
        return 6
    elif '朝东南' in row:
        return 7
    elif '朝南北' in row:
        return 8
    elif '朝西' in row:
        return 9
    else:
        return 10

等等等等,我想说的是绝对还有很多你意想不到的场景,需要你耐心的打磨数据,将搜集到的原始数据,清洗成为可用的数据。

数据清洗需要掌握哪些黑科技

通常我们拿到的数据数据都可以简化为表格模型,无用你是xsl也好,csv亦或json数组也好,都可以利用pandas来读取,读取之后,接下来的工作基本上就是借助在pandas的一些api来做数据清洗工作了,如下,我读取了一份房价信息的数据表,这份数据当然是我自己根据上一篇文章,利用scrapy做了一个爬虫爬取的咯。

img

jupyter笔记

为了让我们能够更好的玩数据清洗,我也不吝啬的贡献出了一份非常全面的pandas的操作Cheatsheet一份,以及后面你一定会用到一个万能的CheatSheet

来来,简单的了解一下pandas的一些常用的api了,举例就用:

img

示例数据一行

1、取子集常用操作

img

取子集

其中,loc是支持按照列名字符串的方式来取子集,iloc支持的是使用数组索引(从0开始)的方式来取子集,通常,逗号前面是行相关的一些条件限制,逗号右边则是列相关的限制。比如,我取得

img

我就取前两列

2、处理空白数据行

img

处理空白数据

这种就很简单愉快了,一个api就可以删除或者填充有空白数据的样本了。

这个就不演示了,因为我是爬虫爬取数据,所以在爬取的过程中,我已经对数据进行了一些基础的处理,程序控制不可能出现空白数据了,所以,我也是建议,自己写爬虫去获取数据,这些减轻数据清洗环节的压力。

3、apply系列

apply其实有比较多兄弟,比如applymap,map,他们的能力各有不同,总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作,如下所示,我这里对ege列进行处理了一了,将数字和文本归一化为数字。

img

apply示例

实际上,这个操作完全可用map来做:

df['ege'] = df['ege'].map(parse_house_age)
df.head(5)

结果完全一样,因为我们只取了一列。

数据清洗比较高级的方式,使用各种图表

1、使用散点图

img

房屋总面积对应总价图

2、房价热力值图:

img

房价区间热力图

图描述了房间分布区间,可以清洗看出一些问题。

3、频率直方图帮助我们迅速找到一些特例独行的猪,因为他出现的次数少嘛,不得不让人怀疑这种数据的真实性。

img

利用直方图快速找出毛刺点

ok,总的来说,这个过程需要开动自己的脑经,把你拿到的原始数据,慢慢慢慢的,变成可以给你下面算法需要的数据。

**此文已由作者授权腾讯云+社区发布

搜索关注公众号「云加社区」,第一时间获取技术干货,关注后回复1024 送你一份技术课程大礼包!

相关文章

  • 机器学习—路线图

    机器学习数据处理步骤: 机器学习基础与实践(一)----数据清洗 机器学习基础与实践(二)----数据转换 机器学...

  • 机器学习--数据清洗

    我们在书上看到的数据,譬如常见的iris数据集,房价数据,电影评分数据集等等,数据质量都很高,没有缺失值,没有异常...

  • 机器学习-数据清洗

    本文由brzhang发表 数据清洗 首先,为何需要对数据进行清洗 数据清洗的工作绝壁是非常枯燥的,做数据研究的的人...

  • kaggle博客

    数据挖掘完整流程机器学习基础与实践(一)----数据清洗 10 种机器学习算法的要点(附 Python 和 R 代...

  • 机器学习基础总结

    机器学习基础总结 一、其它 1. 机器学习的编程流程 模型的训练过程a. 数据的加载b. 数据的清洗c. 数据的分...

  • 机器学习算法之交叉验证

    我们一般解决机器学习问题的步骤如下:1.拿到数据集,对数据集进行清洗。数据集清洗一般包括以下几个方面:重复值处理,...

  • 数据分析学习记录W32——利用Alteryx进行算法建模分析的一

    ①转化业务问题将业务场景问题转化为机器学习模型的问题,确定可使用的模型②清洗数据对原始数据进行清洗,以便进行分析挖...

  • 机器学习:完整机器学习项目流程,数据清洗

    一、完整机器学习项目流程 数学抽象--任务目标 明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常...

  • 数据科学家基本技能(书摘)

    数据分析技能 数据清洗 建立数据模型 运用合适的统计方法来分析数据 开发运用机器学习算法 检验模型的正确与否 实现...

  • 机器学习中数据清洗&预处理

    数据预处理是建立机器学习模型的第一步,对最终结果有决定性的作用:如果你的数据集没有完成数据清洗和预处理,那么你的模...

网友评论

    本文标题:机器学习-数据清洗

    本文链接:https://www.haomeiwen.com/subject/msqsqqtx.html