美文网首页
实验 使用动态优先权的进程调度算法模拟

实验 使用动态优先权的进程调度算法模拟

作者: Jingtianer | 来源:发表于2020-12-14 23:22 被阅读0次

1、实验目的

通过动态优先权算法的模拟加深对进程概念进程调度过程的理解。

2、实验内容

  1. 用C语言来实现对N个进程采用动态优先权优先算法的进程调度。
  2. 每个用来标识进程的进程控制块PCB用结构来描述,包括以下字段:
  • 进程标识数 ID。
  • 进程优先数 PRIORITY,并规定优先数越大的进程,其优先权越高。
  • 进程已占用的CPU时间CPUTIME。
  • 进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。•••• 进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,将进入阻塞状态。
  • 进程被阻塞的时间BLOCKTIME,表示已足赛的进程再等待BLOCKTIME个时间片后,将转换成就绪状态。
  • 进程状态START。
  • 队列指针NEXT,用来将PCB排成队列。
  1. 优先数改变的原则:
  • 进程在就绪队列中呆一个时间片,优先数加1。
  • 进程每运行一个时间片,优先数减3。
  1. 假设在调度前,系统中有5个进程,它们的初始状态如下:
ID  0   1   2   3   4
PRIORITY    9   38  30  29  0
CPUTIME 0   0   0   0   0
ALLTIME 3   3   6   3   4
STARTBLOCK  2   -1  -1  -1  -1
BLOCKTIME   3   0   0   0   0
STATE   READY   READY   READY   READY   READY
  1. 为了清楚的观察各进程的调度过程,程序应将每个时间片内的情况显示出来,参照的具体格式如下:
RUNNING PROG:i
READY-QUEUE:-〉id1-〉id2
BLOCK-QUEUE:-〉id3-〉id4
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = =
ID                           0      1       2       3       4
PRIORITY                     P0     P1      P2      P3      P4
CUPTIME                      C0     C1      C2      C3      C4
ALLTIME                      A0     A1      A2      A3      A4
STARTBLOCK                   T0     T1      T2      T3      T4
BLOCKTIME                    B0     B1      B2      B3      B4
STATE                        S0     S1      S2      S3      S4

实验代码

#include<queue>
#include<iostream>
#include<iomanip> 
using namespace std;
typedef int ID;
typedef int Priority;
typedef int Time;

enum State {
    sready, sblocked, sruning, sstop
};
struct PCB{
    ID id;
    Priority priority;
    Time cpu_time;
    Time all_time;
    Time start_block;
    Time block_time;
    State state;
    public:
    PCB(
        ID id0,
        Priority priority0,
        Time cpu_time0,
        Time all_time0,
        Time start_block0,
        Time block_time0,
        State state0
    ): id(id0), priority(priority0), cpu_time(cpu_time0), 
    all_time(all_time0), start_block(start_block0), 
    block_time(block_time0), state(state0) {
    }
};

struct cmp //��д�º���
{
    bool operator() (PCB* a, PCB* b) 
    {
        return a->priority < b->priority; //�󶥶�
    }
};
typedef priority_queue<PCB*, vector<PCB*>, cmp> mqueue;
const int width = 10;
void show_PCB(PCB* pcb) {
    string state = "";
    switch(pcb->state) {
        case sready: state = "ready"; break;
        case sblocked : state = "blocked";break;
        case sruning : state = "runing";break;
        case sstop: state = "stop";break;
        defalut:state="unknown";break;
    }
    cout 
    << left << setw(width) << setfill(' ') << pcb->id << "|" 
    << left << setw(width) << setfill(' ') << pcb->priority << "|" 
    << left << setw(width) << setfill(' ') << pcb->cpu_time << "|" 
    << left << setw(width) << setfill(' ') << pcb->all_time << "|" 
    << left << setw(width) << setfill(' ') << pcb->start_block << "|" 
    << left << setw(width) << setfill(' ') << pcb->block_time << "|" 
    << left << setw(width) << setfill(' ') << state << "|" << endl; 
}
void show_queue(queue<PCB*> q){
    cout 
    << left << setw(7*width+7) << setfill('-') << "" << "\n" 
    << left << setw(width) << setfill(' ') << "id" << "|" 
    << left << setw(width) << setfill(' ') << "priority" << "|" 
    << left << setw(width) << setfill(' ') << "cpuTime" << "|" 
    << left << setw(width) << setfill(' ') << "allTime" << "|" 
    << left << setw(width) << setfill(' ') << "startBlock" << "|" 
    << left << setw(width) << setfill(' ') << "blockTime" << "|" 
    << left << setw(width) << setfill(' ') << "state" << "|" << endl; 
    while(!q.empty()) {
        PCB* t = q.front();
        q.pop();
        show_PCB(t);
    }
    cout << left << setw(7*width+7) << setfill('-') << "" << "\n";
}
void show_queue(mqueue q){
    cout 
    << left << setw(7*width+7) << setfill('-') << "" << "\n" 
    << left << setw(width) << setfill(' ') << "id" << "|" 
    << left << setw(width) << setfill(' ') << "priority" << "|" 
    << left << setw(width) << setfill(' ') << "cpuTime" << "|" 
    << left << setw(width) << setfill(' ') << "allTime" << "|" 
    << left << setw(width) << setfill(' ') << "startBlock" << "|" 
    << left << setw(width) << setfill(' ') << "blockTime" << "|" 
    << left << setw(width) << setfill(' ') << "state" << "|" << endl; 
    while(!q.empty()) {
        PCB* t = q.top();
        q.pop();
        show_PCB(t);
    }
    cout << left << setw(7*width+7) << setfill('-') << "" << "\n";
}
queue<PCB*> finished;
void run_a_time(mqueue& ready,mqueue& blocked,PCB* runing) {
    mqueue t_ready, t_blocked;
    
    runing = ready.top();
    ready.pop();
    runing->priority -= 3;
    runing->cpu_time += 1;
    runing->all_time -= 1;
    runing->start_block -= 1;
    if(runing->start_block == 0) {
        t_blocked.push(runing);
        runing->state = sruning;
    } else {
        if(runing->all_time > 0) {
            t_ready.push(runing);
        } else {
            finished.push(runing);
            runing->state = sstop;
        }
    }
    mqueue t_queue = blocked;
    
    while(!t_queue.empty()) {
        PCB* t = t_queue.top();
        t_queue.pop();
        t->block_time -= 1;
        if(t->block_time == 0) {
            t_ready.push(t);
            t->block_time = 0;
            t->start_block = -1;
            t->state = sready;
        } else {
            t_blocked.push(t);
            t->state = sblocked;
        }
    }
    t_queue = ready;
    while(!t_queue.empty()) {
        PCB* t = t_queue.top();
        t_queue.pop();
        t->priority += 1;
        t->start_block -= 1;
        if(t->start_block == 0) {
            t_blocked.push(t);
            t->state = sblocked;
        } else {
            t_ready.push(t);
            t->state = sready;
        }
    }
    ready = t_ready;
    blocked = t_blocked;
    
}
int main() {
    mqueue ready, blocked;
    PCB* runing = nullptr;
    PCB* pcbs[] = {
        new PCB(0,9,0,3,2,3, sready),
        new PCB(1,38,0,3,-1,0, sready),
        new PCB(2,30,0,6,-1,0, sready),
        new PCB(3,29,0,3,-1,0, sready),
        new PCB(4,0,0,4,-1,0, sready)
    };
    int pcb_num = sizeof(pcbs)/sizeof(PCB*);
    for(int i = 0; i < pcb_num; i++) {
        ready.push(pcbs[i]);
    }
    
    show_queue(ready);
    int clock_ = 1;
    while(!ready.empty() || !blocked.empty()) {
        cout << "clock = " << clock_ << endl;
        run_a_time(ready, blocked, runing);
        cout << "ready queue:" << endl; 
        show_queue(ready);
        cout << "blocked queue:" << endl; 
        show_queue(blocked);
        //system("pause");
        clock_++;
    }
    show_queue(finished);
    //delete
    for(int i = 0; i < pcb_num; i++) {
        delete pcbs[i];
    }
}

相关文章

  • 实验 使用动态优先权的进程调度算法模拟

    1、实验目的 通过动态优先权算法的模拟加深对进程概念进程调度过程的理解。 2、实验内容 用C语言来实现对N个进程采...

  • 高响应比优先调度算法

    该算法实际上是一种动态优先调度算法,它以相应比作为作业或进程的动态优先权,其目的是既照顾短作业,又考虑到作业的等待...

  • CPU竞争机制

    每个进程都有一个优先权与其关联,具有最高优先权的进程会被分配到CPU。具有相同优先权的进程按FCFS顺序调度。优先...

  • 操作系统实验六

    实验内容 本实验通过编程模拟实现几种常见的磁盘调度算法 简直可怕,怎么可能写出来磁盘调度算法啊喂!算法实现倒还好说...

  • 基于JAVA的进程调度算法

    一、需求分析 在Java开发环境下,模拟进程调度算法,其中该算法所需要的具体功能为:采用最高优先数优先的调度算法(...

  • Nuttx Task Schedule

    调度概念 进程调度 按照某种调度算法从就绪队列中选取进程分配CPU,主要是协调对CPU等的资源使用。进程调度目标是...

  • 动态优先权

    动态优先权是指在创建进程时所确定的优先权,可以随着进程的推进而改变。例如,可以规定:就绪进程的优先权,随着时间的增...

  • [操作系统]实现单处理机下的进程调度程序

    problem 实验内容: 编写一个单处理机下的进程调度程序,模拟操作系统对进程的调度。 要求: 能够创建指定数量...

  • 操作系统的进程调度算法[总结]

    1.写在前面 操作系统的进程调度算法直接关系到用户的使用体验。 运行时间快不快 任务的截止时间有没有保证 优先权高...

  • 采用首次适应算法实现动态分区分配过程的模拟

    实验名称: 采用首次适应算法实现动态分区分配过程的模拟 实验要求: 用C语言编程,实现采用首次适应算法的动态分区分...

网友评论

      本文标题:实验 使用动态优先权的进程调度算法模拟

      本文链接:https://www.haomeiwen.com/subject/mtqigktx.html