G1垃圾回收器
G1的内存结构和传统的内存空间划分有比较的不同。G1将内存划分成了多个(约2048个)大小相等的Region(大小是1M-32M之间并且是2的N次方),Region逻辑上连续,物理内存地址不连续。同时每个Region被标记成E、S、O、H,分别表示Eden、Survivor、Old、Humongous。其中E、S属于年轻代,O与H属于老年代。
示意图如下:

H表示Humongous。从字面上就可以理解表示大的对象(下面简称H对象)。当分配的对象大于等于Region大小的一半的时候就会被认为是巨型对象。H对象默认分配在老年代,可以防止GC的时候大对象的内存拷贝。通过如果发现堆内存容不下H对象的时候,会触发一次GC操作。
跨代引用
在进行Young GC的时候,Young区的对象可能还存在Old区的引用, 这就是跨代引用的问题。为了解决Young GC的时候,扫描整个老年代,G1引入了Card Table和Remember Set的概念,基本思想就是用空间换时间。这两个数据结构是专门用来处理Old区到Young区的引用。Young区到Old区的引用则不需要单独处理,因为Young区中的对象本身变化比较大,没必要浪费空间去记录下来。
RSet:全称Remembered Sets, 用来记录外部指向本Region的所有引用,每个Region维护一个RSet。
Card: JVM将内存划分成了固定大小的Card。这里可以类比物理内存上page的概念。
下图展示的是RSet与Card的关系。每个Region被分成了多个Card,其中绿色部分的Card表示该Card中有对象引用了其他Card中的对象,这种引用关系用蓝色实线表示。RSet其实是一个HashTable,Key是Region的起始地址,Value是Card Table(字节数组),字节数组下标表示Card的空间地址,当该地址空间被引用的时候会被标记为dirty_card。

G1的GC模式
Young GC
Young GC 回收的是所有年轻代的Region。当E区不能再分配新的对象时就会触发。E区的对象会移动到S区,当S区空间不够的时候,E区的对象会直接晋升到O区,同时S区的数据移动到新的S区,如果S区的部分对象到达一定年龄,会晋升到O区。
Yung GC过程示意图如下:

Mixed GC
Mixed GC 翻译过来叫混合回收。之所以叫混合是因为回收所有的年轻代的Region+部分老年代的Region。
1、为什么是老年代的部分Region?
2、什么时候触发Mixed GC?
这两个问题其实可以一并回答。回收部分老年代是参数-XX:MaxGCPauseMillis,用来指定一个G1收集过程目标停顿时间,默认值200ms,当然这只是一个期望值。G1的强大之处在于他有一个停顿预测模型(Pause Prediction Model),他会有选择的挑选部分Region,去尽量满足停顿时间,关于G1的这个模型是如何建立的,这里不做深究。
Mixed GC的触发也是由一些参数控制。比如XX:InitiatingHeapOccupancyPercent表示老年代占整个堆大小的百分比,默认值是45%,达到该阈值就会触发一次Mixed GC。
Mixed GC主要可以分为两个阶段:
1、全局并发标记(global concurrent marking)
全局并发标记又可以进一步细分成下面几个步骤:
初始标记(initial mark,STW)。它标记了从GC Root开始直接可达的对象。初始标记阶段借用young GC的暂停,因而没有额外的、单独的暂停阶段。
并发标记(Concurrent Marking)。这个阶段从GC Root开始对heap中的对象标记,标记线程与应用程序线程并行执行,并且收集各个Region的存活对象信息。过程中还会扫描上文中提到的SATB write barrier所记录下的引用。
最终标记(Remark,STW)。标记那些在并发标记阶段发生变化的对象,将被回收。
清除垃圾(Cleanup,部分STW)。这个阶段如果发现完全没有活对象的region就会将其整体回收到可分配region列表中。 清除空Region。
2、拷贝存活对象(Evacuation)
Evacuation阶段是全暂停的。它负责把一部分region里的活对象拷贝到空region里去(并行拷贝),然后回收原本的region的空间。Evacuation阶段可以自由选择任意多个region来独立收集构成收集集合(collection set,简称CSet),CSet集合中Region的选定依赖于上文中提到的停顿预测模型,该阶段并不evacuate所有有活对象的region,只选择收益高的少量region来evacuate,这种暂停的开销就可以(在一定范围内)可控。
Mixed GC的清理过程示意图如下:

Full GC
Full GC是采用serial old Full GC,G1的垃圾回收过程是和应用程序并发执行的,当Mixed GC的速度赶不上应用程序申请内存的速度的时候,Mixed G1就会降级到Full GC,使用的是serial old Full GC。Full GC会导致长时间的STW,应该要尽量避免
网友评论