美文网首页
An Introduction to Measure Theor

An Introduction to Measure Theor

作者: 馒头and花卷 | 来源:发表于2020-09-01 21:56 被阅读0次

Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.

Chapter 1 Measure spaces

Index:

  • ring/algebras P2
  • \sigma-algebras P3
  • Borel \sigma-algebras P3
  • \sigma-additive P4
  • (X,\mathscr{E},\mu) P7
  • finite, \sigma-finite P7
  • \mathscr{E}_{\mu}, \mu-completion P8
  • \pi-systems P9
  • Dynkin-systems P10
  • Outer measure P11
  • \mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\} P12
  • Lebesgue measure \lambda P12

P9页的Caratheodory定理是在环\mathscr{E}的基础上建立的(实际上半环足以), 通过半环生成\sigma域(通过\sigma(\mathscr{K})=\mathscr{D}(\mathscr{K})). 通过\mathscr{E}构建可测集域(外测度, 扩张), 由于\sigma(\mathscr{E})也是可测集, 所以满足所需的可加性. 当定义在\mathscr{E}的测度\mu\sigma有限的时候(或者存在一个分割), 这个扩张是唯一的.

Chapter 2 Integration

Index:

  • Inverse image \varphi^{-1}(I) P23
  • (\mathscr{E}, \mathscr{F})-measureable P23
  • canonical representation of \varphi P25
    \varphi(x)=\sum_{k-1}^n a_k 1_{A_k}, A_k = \varphi^{-1}(\{a_k\}).
  • repartition function P28
  • archimedean integral P30
  • \mu-integrable P32
  • \mu-uniformly integrable P37

什么是可测函数, 以及什么是\mathscr{E}-可测函数是很重要的 (P24).
什么是\mu-integrable也是很重要的(在\mathscr{E}-可测函数定义的).
不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是
\int_X \varphi d\mu := \int_{0}^{\infty} \mu(\{\varphi > t\}) \mathrm{d}t,
的定义式非常之有趣.

Chapter 3 Spaces of integrable functions

Index:

  • L^p,\mathcal{L}^p P44
  • equivalence class \tilde{\varphi}
  • Legendre transform P45
  • \mu-essentially bounded P45
  • Jensen inequality P45
  • C_b P54

首先需要注意的是, L^p空间是定义在\mu-integrable上的, 所以其针对值域为(\mathbb{R},\mathscr{B}(\mathbb{R})).

Chapter 4 Hilbert spaces

Index:

  • Orthonormal system P63
  • Complete orthonormal system P64
  • Separable P64
  • pre-Hilbert space P57
  • Hilbert space (complete) P58

投影定理, 子空间或者凸闭集(条件和结论需要调整).

Chapter 5 Fourier series

Index:

  • "Heaviside" function P71
  • totally convergent P75

Chapter 6 Operations on measures

Index:

  • Measureable rectangle P79
  • sections, E_x,E^y P79
  • dimensional constant w_n=\mathcal{L}^n(B(0,1)) p83
  • \delta-box P84
  • cylindrical set P86
  • concentrated set P92
  • singular measures P92
  • total variation P97
  • stieltjes integral P103
  • weak convergence P103
  • Tightness of measures P104
  • Fourier transform P108

这一章很重要!

Part1: Fubini-Tonelli

Part2: Lebesgue分解定理P92

Part3: Signed measures

Part4: F(x):= \mu((-\infty,x]), P102, 弱收敛 \lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x]) (除去可数多个点)

Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.

Chapter 7 The fundamental theorem of the integral calculus

Index:

  • density points, rarefaction points P121
  • Heaviside function P121
  • Cantor-Vitali function P121
  • total variation P116

f(x)=f(a)+\int_a^x g(t)\mathrm{d}t,
\lim_{r\downarrow0} \frac{1}{\omega_n r^n} \int_{B_r(x)} |f(y)-f(x)|\mathrm{d}y=0.

Chapter 8 Measurable transformations

Index:

  • differential P123
  • Jacobian determinant P125
  • diffeomorphism P125
  • critical set C_F P125

F_\# \mu(I) := \mu(F^{-1}(I))

有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.
需要用到逆函数定理, 很有意思.

\int_{F(U)} \varphi(y) \mathrm{d}y = \int_{U} \varphi(F(x)) |JF|(x)\mathrm{d}x.

Chapter 9 General concepts of Probability

Index:

  • elementary event P131
  • laws P131
  • Random variable P133
  • binomial law P138
  • Characteristic function P139

注意:
\mathbb{E}_{\mathbb{P}}(X):= \int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega),
是限制在\mathbb{P}-integrable之上的.

Chapter 10 Conditional probability and independece

Index:

  • Independece of two families P147
  • \sigma-algebra generated by a random variable P147
  • Independence of two random variables P147
  • Independence of familes \mathscr{A}_i P149
  • \sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\} P149
  • \sigma(\{X\}_{i \in I}) P152
  • independent and identically distributed P155

由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.
需要区分联合分布的概率和\mu\times v的区别 (当独立时才等价).

Chapter 11 Convergence of random variables

测度 概率
一致收敛 一致收敛
几乎一致收敛 几乎一致收敛
几乎处处收敛 几乎处处收敛
依测度收敛 依概率收敛
L^p收敛 \lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0
弱收敛 依分布收敛

(几乎)一致收敛可以得到几乎处处和依测度收敛.
几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.
依测度收敛必存在一个几乎处出收敛的子列.
L^p收敛一定能够有依测度收敛.

特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数c的时候, 才能推依概率收敛到c(对应的有限测度).

Chapter 12 Sequences of independent variables

Index:

  • terminal \sigma-algerba \cap_{n} \mathscr{B}_n P172
  • empirical distribution function P180

Kolmogorov's dichotomy P173 很有趣.

大数定律再到中心极限定理.

Chapter 13 Stationary sequences and elements of ergodic theory

Index:

  • stationary sequences P186
  • measure-preserving transformation P188
  • T-invariant P189
  • Ergodic maps P189
  • conjugate maps P190

平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.

相关文章

网友评论

      本文标题:An Introduction to Measure Theor

      本文链接:https://www.haomeiwen.com/subject/mvrgsktx.html